
15th International Symposium on Computer Methods in Biomechanics and Biomedical Engineering
and

3rd Conference on Imaging and Visualization
CMBBE 2018

P. R. Fernandes and J. M. Tavares (Editors)
Abstract ID-153

DISCOVERING TIME-CONSUMING SNIPPETS 
IN A MEDICAL IMAGE SEGMENTATION ALGORITHM

Carlos A.S. J. Gulo(1), Antonio C. Sementille(2), João Manuel R. S. Tavares(3)

(1)CNPq & FEUP & INEGI, Portugal
sander@unemat.br

(2)Universidade Estadual Paulista, Brazil
semente@fc.unesp.br

(3)FEUP & INEGI, Portugal
tavares@fe.up.pt

Keywords: Medical Image Processing, Profiling Tools, Computer Performance Analysis

Summary: Image segmentation is one of the most important operations performed on medical 
images: it is responsible for delineating structures on images. Briefly, Active Contour Models 
(ACM) detect the structures whose boundaries are not necessarily associated to high gradient 
values by minimizing an energy, which can be seen as a particular case of the minimal partition 
problem. However, the high computation cost required by this type of model, which is commonly 
used in medical image segmentation, demands optimization strategies in order to reduce their 
computational runtime. High-performance computing techniques have contributed effectively to 
reduce the required runtime of many medical image processing algorithms, making them suitable for 
real-time diagnosis, by fully exploiting all the computational power available in recent computers. 
This article discusses the use of profiling tools on measuring the computational time demanded 
by the Chan-Vese’s image segmentation algorithm which is based on an ACM. Program profiling is 
commonly used to measure instruction set use, to evaluate and identify parts of the code that are 
responsible for excessive resource use. For measuring the performance of functions on the Chan-
Vese’s algorithm implementation, we focused on the profiling tools: gprof and perf. Gathering profile 
data was the first step performed, it was responsible for collecting data while monitoring hardware 
interrupts, operating system calls and performance counters. The collected data was analyzed to 
extract performance statistics and also to record the arc in the call graph responsible for activating 
each implemented function. The generated call graph represents time-consuming functions and 
the number of times the functions were invoked. From the call graph obtained for the Chan-Vese’s 
algorithm, the profile showed that the function responsible for computing locally the signed 
distance function to its zero level set was the most called and the most time demanded, it required 
around 75% of the total running time. We have implemented an OpenMP-based parallel version of 
this costly function and, as result, the runtime was reduced by up to 4 times in comparison with the 
sequential version. Concluding, computational parallelization assisted by profiling tools increased 
the application performance and facilitates implementation efforts.




