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Abstract:  Functional Magnetic Resonance Imaging (MRI) and other dynamic MRI 

applications, require rapid acquisition to measure dynamic processes changes. Experimental 

data are collected in the k-space by following different trajectories to cover the whole space. 

Complete data acquisition needs several minutes: the reduction of the number of collected 

trajectories allows proportional acquisition time reduction but undersampling occurs, 

producing artefacts. In what follows, MRI sparse sampling acquisition and reconstruction 

methods are overviewed. In particular, sparse methods are grouped in two classes: the first 

contains methods in which the sampling scheme is independent of the sample shape, the most 

important is Compressed Sensing (CS); the other contains methods that adapt their sampling 

pattern, by modifying the acquisition trajectories (both in number and directions) during the 

acquisition, to the sample internal structure. In this second class, an emerging set of methods, 

hybrid forms of adaptive CS, are included and discussed. The current paper clarify the 

importance of using adaptive CS strategies in MRI to reduce acquisition time and 

undersampling artefacts and to improve the signal to noise ratio (SNR) of the resulting image. 
 

 

1 INTRODUCTION 

In conventional MRI, the number of collected data for each image is determined by spatial 

resolution requirements and by the Nyquist’s theorem constraints to obtain the desired 

resolution in the aliasing-free, fully-sampled, image. Recently, MRI has developed toward 

dynamic imaging opening up several new applications such as monitoring of contrast agent 

dynamics [1], mapping of human brain neural activity based on blood oxygenation level-

dependent (BOLD) imaging contrast [2], MR-guidance of biopsies [3-5], monitoring of 

ablations or guidance of intravascular procedures [6-12], and real-time visualization of cardiac 

motion [13,14]. Although these developments are promising, they are limited by the 

compromise between temporal and spatial resolution. To improve temporal resolution, 

sampling strategies use “undersampling”. The term undersampling indicates that the Nyquist 
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criterion is not satisfied, at least in some regions of the sampling domain, and images are 

reconstructed by using a number of samples lower than that theoretically required to obtain a 

fully-sampled image. The sampling domain for MRI is called k-space, that is an array of 

complex numbers, each defined in a given spatial position (kx,ky,kz), obtained directly from 

the MRI signals, whose values correspond to spatial frequencies of the MRI image. The k-

space data and the resulting image are related through a Fourier Transform. The sampling 

trajectories used in MRI are mainly those reported in Figure 1. 

Normally undersampling implies image artefacts in the form of aliasing or streak structures. 

Parallel imaging methods such as simultaneous acquisition with spatial harmonics (SMASH) 

[15], sensitivity encoding (SENSE) [16], and generalized autocalibrating partially parallel 

acquisition (GRAPPA) [17] also can be thought as parallel undersampling methods from 

multiple RF coils and receivers, in which a complete image is reconstructed by merging the 

partial information collected by different receivers. 

Time required to fully sample 3D Cartesian k-space is relatively long. Alternative non-

Cartesian trajectories can provide faster k-space coverage and more efficient gradients usage. 

When very fast volume coverage is required, undersampling strategies can be combined with 

non-Cartesian trajectories for further reduction of the scan time.  

 

Figure 1: Cartesian (first column), radial (second column) and spiral (third column) sampling in 2D (first row) 

and in 3D (second row) used in MRI. Dashed lines indicate missing trajectories in case of undersampling.  

Undersampling can influence the resulting image in different ways depending on the k-space 

covering paths (see Figure 1). This implies that it can occur differently in different k-space 

regions. All the sampling/reconstruction methods afford the same problem: to reconstruct an 

image, suppose a 2D image 𝑓(𝑥, 𝑦), starting from some collected sparse samples of its Fourier 

coefficients, F|𝛺 while violating the Nyquist rate. In this paper, recent sparse sampling and 

restoration strategies for solving the previous problem are reported, by making a distinction 

between methods that reduce artefacts independently of the sample shape and structure 

(acquisition trajectories independent of the sample) and those that adapt the acquisition 
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trajectories (both in number and in directions) to the sample shape (during acquisition, the 

information content of the collected data is used to infer the “most informative” future 

trajectories). The current paper speculates on the importance of using adaptive sampling 

strategies in MRI, considering that in the last years some doubts have arisen regarding the real 

usefulness of these methods [18]. 

2 SAMPLE-INDEPENDENT SPARSE METHODS 

This first group includes methods for which redundancy is an implicit property of the image, 

or of its transform in some space, but not directly used for driving data acquisition: acquisition 

uses an undersampling pattern which is independent of the underlying structured shape of the 

image.  

During the last few years, the emerging theory of compressive (or compressed) sensing (CS) 

[19-23] has offered great insight into both when and how a signal may be recovered to high 

accuracy (or, for some instances, exactly) even when sampled significantly below the Nyquist 

rate. 

CS requires the measurement of a relatively small number of “random” linear combinations 

of the signal values (much smaller than the number of signal samples nominally defining it). 

However, because the underlying signal is compressible, the nominal number of signal samples 

is a gross overestimate of the “effective” number of “degrees of freedom” of the signal. As a 

result, the signal can be reconstructed with good accuracy from relatively few measurements 

by a convex constrained optimization procedure. In MRI the sampled linear combinations are 

simply individual Fourier coefficients (k-space samples) and CS can be used. In that setting, 

CS is claimed to be able to make accurate reconstructions from a small subset of k-space, rather 

than an entire k-space grid. The original paper by Candès et al. [19] is dedicated at random 

undersampling of Fourier coefficients, that is the practical situation of MRI [22]. In order to 

reconstruct a complete image from the undersampled problem, the simpler strategy assumes 

that the Fourier coefficients at all of the unobserved frequencies are zero (thus reconstructing 

the image of “minimal energy” under the observation constraints). This method does not 

perform very well because the reconstructed image has severe non local artefacts caused by 

angular undersampling [19]. A good reconstruction algorithm, it seems, would have to guess 

the values of the missing Fourier coefficients, i.e. to interpolate 𝐹(𝑘𝑥, 𝑘𝑦). However, the 

prediction of Fourier coefficients from their neighbours are very delicate, due to the global and 

highly oscillatory nature of the Fourier transform. The prediction can be more efficiently done 

through convex optimization. To recover 𝑓 from partial Fourier samples, a solution 𝑓∗ is found 

for the optimization problem 

𝑚𝑖𝑛‖𝑔‖𝑇𝑉 subject to 𝐺(𝒌) = 𝐹(𝒌) ∀𝒌 ∈ 𝛺 (1) 

where ‖𝑔‖𝑇𝑉 represents the total-variation norm of a 2D object 𝑔 that, for discrete data 

𝑔(𝑥, 𝑦), 0 ≤ 𝑥 , 𝑦 ≤ 𝑁 − 1, has the following form 

‖𝑔‖𝑇𝑉 = ∑ √|𝐷1𝑔(𝑥, 𝑦)|2 + |𝐷2𝑔(𝑥, 𝑦)|2

𝑡1,𝑡2

 
(2) 

and 𝐷1𝑔 = 𝑔(𝑥, 𝑦) − 𝑔(𝑥 − 1, 𝑦), 𝐷2𝑔 = 𝑔(𝑥, 𝑦) − 𝑔(𝑥, 𝑦 − 1) 
As it is, this technique allows just to reduce artefacts with respect to zero filling of the 

missing Fourier coefficients (with the exception of the first example reported in [19]). For an 

accurate reconstruction, also in presence of undersampling, it is necessary that:  

1. the image has a sparse representation in a known transform domain (i.e., it must be 
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compressible by a transform coding: for an n-dimensional object f, if s is the sparsity 

term, that is the number of significant terms of f in some domain, it must be s<<n). 

2. the artefacts caused by k-space undersampling are incoherent (noise like) in the 

sparsifying transform domain. 

3. the image is reconstructed with an optimization method that enforces both sparsity of 

the image representation and consistency of the reconstruction with the acquired 

samples.  

The first condition ensures the image f is s-sparse. MR images meet that condition. The 

second condition ensures the position of the sampled coefficients is casual, i.e. they are 

collected without a specific, deterministic, pattern: this ensures the artefacts due to sampling 

are in the form of uncorrelated noise. MR acquisition can be designed to achieve incoherent 

undersampling. The third condition depends just on the reconstruction method. More details 

on CS method applied to MRI can be found in [22,23]. Though very important, CS can be 

efficiently applied if the number of collected samples, m, is not too different from n. This is for 

two reasons. First, the sparsity of the image, s, is unknown a-priori. Second, most CS 

applications, especially within medical imaging, have centered on the L1-minimization 

problem because the corresponding L0-minimization problem is intractable. An interesting 

recent improvement of CS regards the proposal of an innovative Homotopic L0-Minimization 

[24] in which the authors describe a method for reconstructing MR images at sampling rates 

even further below that which are achievable using L1-based CS methods by directly attacking 

the ideal L0-minimization problem. Moreover, a practical scheme is presented for addressing 

the L0 quasi-norm based on homotopic approximation using a wide class of deformable sparse 

priors, and an efficient semi-implicit numerical scheme for computation is described. The 

authors demonstrate both the problem tractability and the goodness of their results, when 

compared to the classical L1-based CS methods, in spite of a reduction of the used samples for 

reconstruction.  

Knopp et al. [25] present interesting results about the iterative reconstruction from non-

uniform k-space sampled data though data sparsity is not reflecting CS requirements. They 

discuss about the effectiveness of using not-uniform FFT to reconstruct images directly from 

radial or spiral directions, through a generalization of the gridding process [26]. Very accurate 

results are obtained by using an iterative method to estimate density compensation weights, 

taking the result of gridding as a starting point. The best gridding results are obtained using the 

more expensive Voronoi weights. However, substantial improvement of the reconstruction 

quality is achieved during a small number of iterations for all used trajectories and weights.  

Block et al [27] afford the problem of severely undersampled radial data in an iterative way 

with the usage of a TV constraint for the final image to reduce the strike artefacts produced by 

radial undersampling: also in this case the sparse samples do not fill the CS constraints. The 

reconstruction is obtained as a non linear optimization problem, solved through the conjugate 

gradient method. First, a search direction is estimated and, second, a line search into that 

direction is performed until the minimum of the functional in this direction has been identified. 

The search direction is obtained by calculating the gradient of the actual image estimate. At 

every step of the algorithm, the image estimate is mapped to the frequency domain. It is then 

controlled how well the estimate fits the measured data by calculating the difference. If the 

estimate is good enough, then the residuum vector contains only small entries, otherwise it 

contains large entries. In this case, the algorithm needs to know how to modify the image 

estimate to improve the match of the samples in the frequency domain. This information is 

obtained by mapping the residuum back to the image space. The reconstruction of an 

undersampled radial image through optimization still leads to streaking artefacts: the procedure 
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does not measure the accuracy of the estimate at any other position in k-space than at the 

positions of the measured k-space coefficients. Being an underdetermined problem, more than 

one solution exist. To overcome this limitation, a penalty function is introduced into the 

optimization problem, based on the total variation constraint. The basic assumption of this idea 

is that the object consists of areas with constant (or only mildly varying) intensity, which 

applies quite well to medical tomographic images. If the object is piecewise constant, then the 

best representation of all image estimates that match at the spoke positions should be given by 

the one with the lowest derivatives at all pixel positions, that is the one minimizing the total 

variation, represented as the summation of the modules of the image second order derivatives 

(as discussed by the authors, the choice for the best derivative order still remain a debated 

argumentation). The obtained results are quite good regarding artefacts reduction, but some 

residual blurring is present.  

Between the sample-independent methods prior to CS, Placidi et al. [28] describe an 

algorithm which is effective in reducing truncation artefacts due to missing k-space directions 

in MRI. The algorithm works first by filling the incomplete matrix of coefficients with zeroes 

and then iteratively adjusting the missing coefficients through a Fourier Transform method 

[29]. Then, this set of coefficients is used as a basis for a super-resolution algorithm that 

estimates the missing coefficients by modeling data as a linear combination of increasing and 

decreasing exponential functions with the Prony’s method [30]. The Prony’s method consists 

on the interpolation of a given data set with a sum of exponential functions: the MRI signals 

can be well represented as a sum of exponential functions and the missing data can be 

extrapolated by this representation. The algorithm can be used both for Cartesian and for radial 

undersampling, but it requires some computational overhead. A simpler variation of this 

method is reported in [31] where a simple constraint for iterative reconstruction, capable to 

deal with any sparse acquisition method, is used. The suggested methodology is based on the 

attempt to fill in the missing complex k-space values iteratively, by using the assumption that 

the image has to be zero outside a compact support. This approach transforms the original 

problem into an interpolation problem in the complex domain. The novelty is that it deals with 

iterative interpolation in the k-space based on the elimination of the artefacts from an extended 

support of the reconstructed image. Residual artefacts are reduced by using the method 

reported in [32]. The results, simulating different sparse acquisition strategies (Cartesian, 

radial, and spiral sampling), are not significantly different from those obtained by the original 

iterative method [28], though with very low computational overhead. 

3 SAMPLE-DEPENDENT SPARSE METHODS 

Different approaches are based on driving the acquisition process to adapt the collected 

signals to the sample shape.  

Placidi et al. [33-35] present adaptive acquisition techniques for radial sampling MRI, first 

defined in the image space [33] and then in the k-space  [34,35], to reduce the total acquisition 

time by collecting just the “most informative” trajectories, without any a-priori information on 

the image, but using information regarding the structured shape of the image collected during 

acquisition (in MRI, acquisition is a sequential process). This is possible through the 

calculation of a function, called entropy for its resemblance with the thermodynamic entropy, 

which measures the information content of each trajectory during the acquisition process, 

useful to discover sample internal symmetries, smooth or regular shape. In the k-space method 

[35] the entropy function is defined on the power spectrum of the projections. The process 

starts by measuring four regular orientations: 0°, 45°, 90°, and 135°. Then the evaluation of 
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their information content is performed, followed by the selection of new angles where the 

information content is maximum. The next trajectory is measured between the two where  the 

entropy function has a maximum. The procedure is repeated until the difference in entropy is 

significant. The method makes it possible to reduce the total acquisition time, with little 

degradation of the reconstructed image, adapting itself to the arbitrary shape of the sample 

(being able to catch eventual internal symmetries, low dynamic range and regular shape). The 

choice of, approximately, the most informative trajectories is made during the acquisition 

process, taking into account the information content of the previously collected data. The 

method allows the acquisition of a near optimal dataset, but not the optimal one. In fact, though 

very effective in reducing the acquisition time and undersampling artefacts, this method suffers 

from the following limitations: some important trajectories can be excluded from the acquired 

set, especially in the proximity of entropy function minima or maxima; some redundant 

trajectories can be collected, especially in the proximity of entropy function sharp variations. 

An effective application of the previous adaptive acquisition method has been also presented 

as a medical image compression strategy [36].  

The method described in [37] considers the problem of measuring exactly the most 

informative set of radial directions by collecting a-priori information about the sample through 

the preliminary measurement of two circular paths at different distances from the k-space 

center. The idea behind the algorithm is that the power spectrum of a standard MR image is 

mainly distributed along specific k-space radial directions. These directions often terminate 

before the k-space border has been reached. Some of them do not start from the k-space center 

and extend to the k-space border. For taking into account these opposite situations, a set of 

preliminary circular trajectories are collected. Circular trajectories allow the interception of the 

most important radial trajectories. By analyzing the collected data, it is possible to establish 

the best set of trajectories before the image acquisition starts. For this reason, the acquisition 

process consists of the preliminarily collection of two concentric circular trajectories having 

the center in the image k-space center. The directions of the most informative trajectories can 

then be set by using the information acquired from the power spectra of these paths of 

coefficients. The set of these angular directions is optimal, most informative, set of trajectories 

to be collected in a standard way. Thought they require some preliminary time to collect the 

necessary information about the optimal angle set before the acquisition of radial projections 

started and, in some case, specialized hardware, the adaptive algorithms allow both the 

improvement in image quality and the reduction of the number of k-space coefficients with 

respect to other, non-adaptive, methods. Near optimal acquisition parameters are priory studied 

and set by using a numerical MRI simulation algorithm [38].  The adaptive methods proposed 

in [33-37] use a restoration/reconstruction method based on FFT and nearest neighbor 

interpolation [39]. Nearest neighbor interpolation is justified by the fact that close measured 

projections are very similar because of the used adaptive acquisition methods.  

More recently, modifications to pure Compressed Sensing strategy, with the inclusion of 

selective sampling strategies, have been published. One of these, by Haupt et al. [40], propose 

a selective sampling procedure, called distilled sensing (DS) for the association with the 

purification occurring during the process of distillation, which is demonstrated to be effective 

for recovering sparse signals, supposed composed of non-negative values, in noise. DS is a 

sequential method which uses a collection of observations of the components of a sparse vector 

to identify and eliminate progressively the set of null components (absence of useful signal) 

while retaining the significant components. The process is a refinement of the observations 

which iteratively allocates more sensing resources to locations that are most promising while 

ignoring those that are unlikely to contain significant signal components. The method uses the 
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fact that it is highly improbable that the signal (which is assumed to be positive) is present at 

locations where the observation is negative. The algorithm terminates after the final 

observation and its output is composed both by the final observations and by the set of locations 

measured in the last step. The DS application allows a significant improvement in effective 

signal to noise ratio (SNR) [41] compared to traditional compressed sensing without any 

adaptive selection method, though it is useful just for recovering positive signals.  

An interesting paper [42] suggests and demonstrates that, by using an adaptive recovery 

strategy of wavelets transform coefficients of a signal by using their statistical dependences 

modeled using Hidden Markov Trees [43], the exploitation of the structure (the sparsity 

pattern) of structured sparse signals helps in improving results both with respect to traditional 

compressed sensing and with respect to adaptive sensing methods [41,42]. Moreover, its results 

fully support and justify the methods presented in [33-37] and discussed above.  

Though the good experimental results obtained by adaptive strategies, in [18] the authors 

discussed the limits of any adaptive sensing technique with respect to the classical compressed 

acquisition/recovery scheme when it is necessary to afford the problem of acquiring arbitrary 

linear measurements F of a s-sparse n-dimensional vector f. In particular, they demonstrated 

that the following folk theorem is false: the estimation error one can get by using an adaptive 

strategy which cleverly selects the next sampling trajectory based on what has been previously 

observed is far better than what is achievable by a nonadaptive strategy which sets sampling 

directions ahead of time, thus not trying to learn anything about the signal in between 

observations. Though the previous folk theorem is false, it does not correspond to what a real 

case of adaptive sequential acquisition pursues. The following, applicable to sequential 

acquisition, version of the folk theorem is true: The estimation error one can get by using an 

adaptive strategy which cleverly selects the next sampling trajectory based on what has been 

previously observed is better (in some cases, depending on the sample image, far better) than 

what is achievable by a nonadaptive strategy, tends faster to the minimal estimation error and 

furnish an accurate estimate of the sparsity value s of f (it allows a stopping criterion).  

For its demonstration, it is possible to use the arguments of the authors [18]. In particular, 

that an adaptive strategy could exist that gives an estimation error that is better than a non 

adaptive scheme has been demonstrated in [18]. In fact, the authors demonstrate that a clever 

adaptive strategy can reduce the number of collected measurements of at least log(n/s) with 

respect to classical nonadaptive strategy with the same SNR, thus implying both that the clever 

strategy allows lower error and that it converges faster than a nonadaptive strategy. 

The fact that an adaptive strategy could give an estimation error which is “far better” than a 

nonadaptive CS scheme depends on the underlying shape of the sample to be images. In fact, 

if the shape of the sample is regular, smooth and or symmetric, that is it has a structured shape, 

the adaptive scheme collects this information and terminates the acquisition process well 

before the nonadaptive CS scheme.  

In fact, the classical blind method, having no information regarding f, has to fix m, the 

number of measurements, at a conservative value (at least m=s log(n/s) [22,23], hopefully to 

about m=3s, but the value of s is unknown for classical CS!) in order to avoid artefacts in the 

form of high residual noise (that is, low signal to noise ratio). On the contrary an adaptive 

scheme, by collecting information of f during the acquisition both regarding the number of 

significant coefficients (in some space, it is capable of estimating s) and regarding their value, 

is able to stop the acquisition when the estimation error has reached a nearly constant value 

(the acquisition process, being incremental, allows the residual value to decrease almost 

monotonically until it has reached the experimental noise level). These are the reasons why 

adaptive schemes outperform the traditional CS strategy in practice. 
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The previous considerations fully justify the exploration of adaptive sparse sampling 

strategies and, more important, justify the proposal of adaptive compressed sensing strategies, 

as occurring in [44], where a Compressive Adaptive Sense and Search (CASS) algorithm is 

presented. CASS operates by dividing the signal into partitions and then using compressive 

measurements to test the presence of one or more significant (non-zero) elements in each 

partition. The procedure continues its search by bisecting the most promising partitions, with 

the goal of returning the largest s components (s is the sparsity of the signal, as above) of the 

vector. An analogous active search greedy algorithm has been proposed for robotic search from 

images [45] where it is also shown that the proposed adaptive technique can be substantially 

better than classical CS when the measurements are subject to the physically constraints of 

region sensing, especially if the physical space has low dimensions. In [46] the lower bounds 

performance regarding adaptive sensing for noisy sparse signal detection and support 

estimation are defined. Moreover, it defines the necessary conditions for the minimum 

amplitude for non-zero components and shows that the adaptive sensing strategies are 

essentially optimal and cannot be substantially improved.  

Though interesting, the adaptive variations of CS reported above are not directly applicable 

to MRI. In fact: they are one-dimensional techniques and are incompatible with MRI 

acquisition requirements and trajectories (Figure 1); some of them require that the signal is 

non-negative and this is different from what occurs in MRI (oscillating signals of complex 

numbers). For the specificities of MRI acquisition and trajectories, slightly different adaptive 

techniques have been proposed.  

The possibility of using a hybrid, adaptive-CS, sampling strategy for MRI is, for the first 

time, proposed in [47], where it has been verified that the adaptively, radially collected, 

samples verify the CS constraints and a L1-norm based non-linear reconstruction can be used 

to obtain very accurate image reconstruction. After that, an alternative adaptive-CS method is 

presented that combines random sampling of Cartesian trajectories with an adaptive 2D 

acquisition of radial projections [48,49]. It is based on the evaluation of the information content 

of a small percentage of the k-space data situated in the central region of the sampling space, 

collected randomly but along Cartesian directions, to identify radial blades of k-space 

coefficients having maximum information content. The information content of each direction 

is evaluated by calculating an entropy function defined on the power spectrum of the 

projections. Besides that, the images are obtained by using a non linear reconstruction strategy, 

based on the homotopic L0-norm [24], on the sparse data. The method overcomes classical 

weighted CS in image quality, though a lower number of collected samples is used. The use of 

homotopic L0-norm minimization makes possible to obtain better reconstructions than by 

simple L1-norm. The same method is also applied on cardiac MRI data in [50] with good 

experimental results. The previous method, though effective in reducing  acquisition  time 

while obtaining high quality images, is not optimal in the termination criterion (the estimation 

of the image sparsity), because some directions are wasted both for the definition of the first 

Cartesian dataset and for the blades measurement, and requires highly specialized software 

(specific MRI hardware is also recommended for allowing both single direction acquisition 

and blades of contiguous, parallel, directions). A simple, but efficient, iterative adaptive 

acquisition method (AAM) for radial sampling/reconstruction MRI is presented in [51]. AAM 

studies the inherent sparse structured pattern of the underlying image by analyzing the data 

acquired during the sequential acquisition to obtain useful information regarding the following 

“most informative” directions to be explored: the process is adaptive in the sense that it adapts 

the following directions to the shape of the object under investigation.  The information 

regarding the shape of the object are collected through the wavelet analysis of a subsampled, 
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approximation, image reconstructed by an initial subset of directions. The use of the wavelet 

domain is justified by its sparse nature and by its good properties of multiresolution and 

locality; the relationship between the MRI measurements in the k-space and wavelet domain is 

used to define the reconstruction process by finding the image f such that it is sparse in the 

wavelet domain and that its representation in the k-space is very close to the measured data.  

AAM starts by considering a subset of equally spaced radial directions: for the given dataset, 

a reduced square support in the Fourier space is defined in which the resulting image is fully 

sampled. (*) Then, for this support the image is reconstructed. If the maximum image support 

is reached, the process is terminated and the reconstructed image is the final image. Otherwise, 

the wavelet transform of the image is calculated and the horizontal, vertical and diagonal details 

are estimated:  the image is up-sampled of a factor 2 in the wavelet domain. Then, the inverse 

wavelet transform is calculated and finally the inverse Fourier transform of the resulting image 

is performed.  In this case, a Fourier support up-sampled of a factor 2 is obtained for the 

unknown image. The resulting support is used for calculating the information content of the 

resulting coefficients and for calculating the position of “significantly informative” following 

directions (if any: in case of no further presence of significant directions, the acquisition 

process terminates). The new directions are measured, data integrated in the previous dataset 

and the process repeated with the image reconstruction (step * above). The up-sampling 

process in the wavelet domain is performed by using the following assumption [43]: if relevant 

information are present on the root, it is highly probable that relevant information are present 

also at the details levels and, in negative form, if relevant information are absent on the root, it 

is highly probable that they are also absent at the details levels. The distribution of 

relevant/irrelevant information to finer details is performed by using a quadtree representation: 

by knowing the position of an irrelevant (respectively, relevant) wavelet coefficient at a root 

of a quadtree, it is possible to assume information regarding the irrelevance of all its 

descendants in the tree (respectively, it is possible to estimate the details at finer scales, that is 

to interpolate, by using the correlation between the new root and its childs). The results, also 

in this case presented for cardiac MRI, demonstrate the advantages of an adaptive sensing 

strategy with respect to a classical CS scheme: an adaptive method tends to converge faster; it 

allows an acceptable estimation of the sparsity s of f, that is the adaptive method allows a strong 

reduction of the data (with respect to CS) necessary to reconstruct f with the same estimation 

error obtained by CS. Work is currently in progress in order to verify how to apply the adaptive 

strategy also to other MRI sampling strategies (for example, pure Cartesian, or spiral). 

4 CONCLUSIONS 

Recently MRI has developed considerably into the directions of dynamic imaging and fMRI 

opening up several new fields of application, in particular referring to real-time imaging. 

Although these developments are generally promising their application can be limited by the 

compromise between temporal and spatial resolution. To improve temporal resolution, 

undersampling is used.  

A review of the most effective methods for sparse sampling acquisition and reconstruction, 

with the aim of reducing the undersampling artefacts, has been presented. In particular, 

methods have been classified in two classes: those methods that use sampling strategies whose 

patterns are independent of the sample shape, and those methods that adapt their action by 

modifying the sampling trajectories during the acquisition, i.e. the chosen trajectories (both in 

number and directions) are dependent on the sample shape. To the first class of methods allows 

also the traditional CS strategy, a very breakthrough technique which, for some extends, 
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appears as counterintuitive: images can be almost exactly reconstructed by a sparse set of its 

Fourier coefficients, below the Nyquist requirements, if they are compressible and the collected 

coefficients are casually collected in the k-space. The second class contains some adaptive 

methods: they allow a strong reduction of the collected data if the k-space paths are collected 

through the most informative directions (most informative coefficients). Both CS and Adaptive 

methods require the images to be compressible, but they are completely different regarding the 

acquisition directions: in the first data are collected casually, in the second data are collected 

along the “most informative” trajectories. Though the usefulness of the adaptive strategies has 

been recently questioned [18], they overcome traditional CS in terms of acquisition time 

reduction, SNR increment and undersampling artefacts reduction. However, best results are 

obtained when hybrid adaptive CS strategies are used. For this reason, very promising hybrid 

strategies, are currently under investigation to obtain near optimal image reconstruction (as 

ensured by CS) with a reduced number of collected samples and SNR maximization (as 

ensured by an adaptive sampling strategy). 
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