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Abstract: 3D reconstruction from low dose Bi-Planar X-Rays (BPXR) has become common
practice in clinical routine. The aim of this study is to partially automate the process for the
femur, thus decreasing reconstruction time and increasing robustness.
As a training set 50 femurs were segmented from CT scans together with 120 BPXR reconstruc-
tions. From this data and 8 digitized landmarks, bony shapes are initialized through Gaussian
Process Regression (GPR). This initial solution is retro-projected on both x-rays and automati-
cally adjusted based on an adapted minimal path algorithm (MPA).
The proposed method has been applied to the femur and evaluated comparing 20 cadaveric CT
scans (0.75 mm resolution) from which we have simultaneously generated digital radiographs
and their bony surfaces. The projected Euclidean distances between femur reconstructions and
the segmented CT data were on average 1.0 mm with a Root Mean Square Error (RMSE) of
0.8 mm. Femoral torsions errors were also assessed: the bias was lower than 0,1◦ with a 95%
confidence interval of 4.8◦.
Such a method drastically improves 3D reconstructions from BPXR since it allows to obtain a
fast and reliable reconstruction without any further manual adjustments, essential in clinical
routine.

1. INTRODUCTION

Three-dimensional reconstruction of the skeleton from bi-planar X-rays has become com-
mon practice in clinical routine. Compared to standard imaging techniques such as Computed
Tomography (CT-scan), these low dose images modalities are faster and enable to obtain the 3D
surface of the bones in standing position. Femur reconstructed from bi-planar X-rays is one of
the most considered bone in the literature [1–5] and the method used in [6, 7] is now routinely
applied in clinical environment.Thus it has been proved to be useful for pre-operative surgical
planning but also for patient monitoring. Then, [6, 7] considered a two stage fast reconstruc-
tion process (5 minutes for both lower limbs). First, the operator needed to select landmarks
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on both images. Based on these landmarks, the femur was parameterized through geometri-
cal primitives and used partial least squares regression associated with moving least squares
(MLS) deformation to obtain an initial solution. In a second stage, the operator adjusted the
retro projected contours of the initial model comparing to the image contours. This is realized
using handles to locally drive the deformation through MLS. This method has been validated
regarding the clinical parameters [6, 7], however training is required to expect a trustworthy
bone representation. Automation is then appropriate to improve robustness and speed up the
process.
Since, several algorithms have been proposed to automate the 3D reconstruction process. A lot
of them are based on statistical shape model [3, 8–10], some are based on geometrical primi-
tives parametrization [6, 7], some have a non parametric approach [2, 5]. This last one is contour
based and have usually four steps: an initialization, a contour detection, a contour matching and
a deformation process like dual kriging [11].

Contour detection is a challenging part in noisy images, in particular when bone structures
overlay. A Minimal Path Algorithm (MPA) was introduced by [12] and successfully applied
to the femoral head [13]. Also Gaussian Process Regression (GPR) was recently proposed for
shape models [14] and can be considered as a generalization of [5]. However, it still might fail
in case of multiple contours superimposition. Therefore, we propose here a method combining
a modified MPA and GPR.

2. MATERIAL AND METHODS

2.1 Gaussian Process Regression

GPR is a way to predict a posterior shape model composed with nl 3D anatomical landmarks
knowing ml ⩽ nl of them.
Let Si, i = 1, ..., N be N 3D shapes. Each shape model can be represented through a set of
corresponding landmarks (xi

k, y
i
k, z

i
k) ∈ R3, k = 1, ..., nl:

Si = (xi
1, y

i
1, z

i
1, ..., x

i
nl
, yinl

, zinl
)T |i = 1, ..., N (1)

Therefore, assuming vectors Si follow a multivariate normal law, u ∼ N (µ,K), the mean
shape model µ and the kernel as the Principal Component Analysis (PCA) covariance matrix
can be estimated as (2).

µ =
1

N

N∑
i=1

Si and K =
1

N
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i=1

(Si − µ) (Si − µ)T (2)

Then, knowing P = [P1, P2, . . . , Pml
], with pk ⊂ {(xi

k, y
i
k, z

i
k) ∈ R3|k = 1, ..., nl} and assum-

ing u (pk) + ε = ũk, with ε ∼ N (0, σ2I3ml
), GPR evaluates ∀(x, x′) ∈ GP a posterior mean µ

and a posterior kernel Σ, with a variance σ2 related to the accuracy of the input landmarks.

µ(x) = µ(x) +K (x, P )
(
K (P, P ) + σ2I3ml

)−1
(ũ− µ(P ))

Σ(x, x′) = K (x, x′)−K (x, P )
(
K (P, P ) + σ2I3ml

)−1
K (P, x′)

(3)
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2.2 Subjects and database

GP1 is built from 120 femurs reconstructed from bi-planar X-rays [16], they are aligned on
their barycenter, encoding this way the rigid rotation prior. 50 already segmented femurs were
collected from the Virtual Skeleton Database [15]. These femurs are used to build an additional
GP2, they have been registered with the same method than [18] and aligned through the Gener-
alized Procrustes Analysis (GPA).
The second part of our database is dedicated to the validation process and is completely inde-
pendent from the previous one. 20 femurs were segmented from cadaveric CT-scan (0.75 mm
thickness) using MITK-GEM [17] (16 intact and 4 pathologic). 24 (mean age 26.9 year, 12 sub-
jects, 6 males, 6 females) healthy and 16 (mean age 67.5 year, 10 subjects, 6 males, 4 females)
pathological (osteoarthritis) femurs were also reconstructed from bi-planar X-rays (0.186 mm
resolution) from the method described in [7].

2.3 Initial solution

8 radiologic landmarks (Fig.1) are digitized on each X-rays 1 stereo corresponding (SCP)
landmark (1 sphere for the femoral head), 4 Non Stereo Corresponding Points (NSCP) on the
frontal view (greater and lesser trochanter and the medio-lateral points of the condyles), 2 on
the sagittal view (the two posterior condyles points).

(a) Sagittal view (b) Frontal view

Figure 1. Initial digitalization of the femur from bi-planar X-rays

At this stage, the SCP is used through the GPR using GP1. One of the landmarks is ran-
domly assigned to the medial posterior points, the other one as the lateral posterior landmark.
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Then, 2 successive GPR are applied, using first the posterior points, then the lateral one. Con-
trary to the previous point, they are NSCP, only the line they belong to are known. Therefore,
to get an approximate 3D location of the vertex, the corresponding one on the current femur
shape is projected onto this line. The two configurations are tested and the one with the higher
probability shape score regarding the GP is kept.

2.4 3D reconstruction algorithm

Once the initial solution is obtained, a modified MPA with three cost maps is applied, fol-
lowed by a deformation step restricted to some regions Ri depending on the iteration i. While
the maximum displacement condition is not reached or i < 20, the process iterates again (Fig.2).

Manual 
digitalization

GPR with GP1 MPA
GPR with GP2,

dual kriging
restricted to Ri

Final solution
Max 

displacement
< 0,5 mm

i > 5:
Statistical cost map 

deactivated

Shrinking 
ribbon

Figure 2. Whole pipeline of the reconstruction process

MPA [12, 13] has been proved to be robust to detect linear features in gray images using an
initial solution. Starting from an initial contour, it looks for a similar shape in a user defined
range search area. In the contour extraction process of the mesh, two kind of contours are
considered, the external ones which basically correspond to the silhouette and the internal ones
which are generated from local bumps. Internal contours are computed in a similar way to [10].
The outer contours of the projected mesh are obtained first projecting all triangle faces, then
iteratively merging them using Vatti’s algorithm [19]. This process ensures a clean silhouette
extraction and enables to identify the vertices belonging to this one.
A recursive median filter followed by an adaptive histogram equalizer filter are first applied on
the region of interest. Then, as the MPA is graph based, it involves one or several cost maps.
The first one, related to the smoothness cost is similar to the one depicted in [13]. The first step
aims to straighten a ribbon which medial axis follows the retro-projected contour of the initial
solution. In fact, points are regularly samples along the initial contour (Fig.3). Along the ribbon,
closest vertices belonging to the contour are merged with the sampled points. Orthogonal lines
nj ∈ R2 are then computed going through all the previous points and gray values of the images
are resampled along those lines. From the previous interpolated ribbon, the oriented gradient is
obtained. Finally the obtained cost map is reverted for the graph minimization solving.
A second type of cost map is introduced to constrain the path to go through digitized landmarks.

To do so, we first define the incertitude range related to the operator expected accuracy for each
point [20]. Then for all weights of the cost map in this range around the selected landmarks,
the new weights values are set as an infinity cost. The neighborhood of the keypoints are also
weighted with a Gaussian kernel to smoothly drive the path near the operator selection. The
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Search area

Point on the contour

Current contour

Candidate points

Figure 3. Sampling process of the ribbon

sigma value is the same as the incertitude value.
The last cost map is a statistical one. Actually, to each candidate point on nj , a constrain line can
be associated. And, to each of this constrain line a 3D point can be calculated as the projection
of the 3D shape onto this line. Then, considering the posterior GP1 with a mean µ and a kernel
Σ, for two neighbor candidates (p1, p2) ∈ R3 along nj , similar to [21], the paired statistical
energy is defined as:

Estat(p1, p2) =
1

2

2∑
i=1

(
exp

(
−1

2
(pi − µ)Σ

−1
(pi − µ)T

))
(4)

This energy is particularly efficient to discriminate outliers. For example, on the proximal part,
when diaphyses are close from each other, and parallel enough, the statistical cost function
ensures the right contour of the right diaphysis is detected. Finally, the directed graph can be
solved using dynamic programming as proposed in [13] (Fig.4).

At this stage, the MPA found a contour which follows the gradient edges. Thanks to the
sampling process, paired points between the current contour and the one which is detected are
automatically set. To compute a plausible new 3D location of each vertex belonging to the
contour, the associated one to the current 3D shape is projected on the constraint line coming
from the image paired point. The vertices which belong simultaneously to the contour and to the
GP2 are used in the GPR. It is therefore necessary to also rigidly align the new matched vertices
coordinates in the GP space. For that reason GPA is realized between the matched vertices
and the corresponding mean ones of the GP. To model uncertainty of the new locations of the
concerned vertices, anisotropic Gaussian noise is introduced with a variance of 20 mm2 in the
direction of the constrained line, 2 mm2 otherwise. A second deformation stage is achieved;
this time, a dual kriging [11]. This enables to capture finer details and optimize the global
position of the bone. Finally, the obtained shape is back projected and the same last steps are
applied again.

Because particular matched regions are not reliable at first sight, they are deactivated during
the first iterations. For example the lesser trochanter and the anterior distal part near the patella
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(a) Sagittal view (b) Frontal view

Figure 4. Result of the MPA using the back projected contours of the initial solution - red,
contour of the initial solution - green, search area - blue, new detected contour

are activated after 5 iterations. Meanwhile, these regions are driven by the GPR and therefore
get closer and closer from the target shape.
Simultaneously to this process, the ribbon is shrinked, discarding outliers in noisy areas. Con-
sidering rw0 as the initial ribbon width, sf the shrinking factor and i the number of iterations,

rw = rw0sf
i (5)

rw0 and sf are arbitrary defined through a trial-and-error methodology. For instance, rw0 was
set to 120 px and sf to 0.9 for the frontal silhouette.

2.5 Evaluation

The 3D reconstruction has been first evaluated in terms of shape and femoral torsion ac-
curacy. For each cadaveric CT-scan, a 3D mask has been drawn to remove one lower limb,
as the two femurs were each time strictly aligned. From these masked 3D volumes digitally
reconstructed radiographs (DRR) are created to simulate bi-planar radiographs with the same
radiological environment of the EOS (EOS imaging, Paris, France).
The 3D reconstruction of the femur from DRRs was then compared to segmented object consid-
ered as the gold standard. As the DRR is generated in the EOS environment, point-to-surface
distances can be computed directly. The reconstructed femurs all have the same topological
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mesh since they are generated from the GP. Therefore, a distance map is calculated projecting
the 2372 vertices onto the target segmentation. At each of these vertices, mean and the RMSE
are calculated. The global mean error and the 2 RMSE values are estimated too. Femoral tor-
sion, considered as the major clinical parameter was automatically extracted from both shapes,
our 3D reconstruction and the gold standard.
The semi-automated 3D reconstruction has also been evaluated on real bi-planar X-rays. From
the database of 40 patients, this method was compared to the fast one [7] in term of femoral
torsion. A Bland-Altman plot [22] has also been calculated to compare the two methods.

3. RESULTS

3.1 Comparison to the CT-scan

The point-to-surface distance between the 3D quasi automated reconstruction of the femur
(Fig.5), and the 3D reference shows a global mean value of 1.0 mm and 2 RMSE 1.6 mm. We
compare favorably to [7]: 0.3 mm less for the global mean and 0.8 mm less for the 2 RMSE.
The higher errors appear on the interior part of the greater trochanter. The femoral torsion error
are presented through the Bland-Altman plot Fig.6. The bias of the femoral torsion error is
reported as 0.1◦ (2.2◦ for the fast method) and the 2 standard deviation (SD) as 4.7◦ (not defined
for the fast method).

3.2 Comparison to the previous method

The bias of our computed femoral torsion compared to the fast reconstruction [7] is reported
as -1.1◦ and a 2 SD of 5.5◦. As previously, the Bland-Altman plot provides a more detailed
overview Fig.7. Note the 2 SD reproducibility error in the fast method was estimated as 3.8◦.

4. DISCUSSION

The aim of this study was to fasten the previous reconstruction method using a non ambigu-
ous digitization.

4.1 3D reconstruction method

The fast reconstruction method [7] required two steps: initial solution and contour adjust-
ment. The reconstruction pipeline proposed here only needs 2D digitalization; adjustment is
now fully automated reducing operator time. Regarding the initial solution, it is less operator
dependent since medio-lateral condyles don’t have to be distinguished anymore. Meanwhile,
the number of radiological landmarks have been lowered (40 s. to select them).
Moreover, automated segmentation have been achieved combining MPA with different priors,
GPR and dual kriging. This overcome the issue of diversity [14] of the database on which
usually relies SSM based methods.
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(a) distance map of the mean errors (b) distance map of the RMSE

Figure 5. Points-to-surface metrics comparing the proposed method to the gold standard

0 2 4 6 8 10 12 14
−8

−6

−4

−2

0

2

4

6

8

average femoral torsion for each patient (°)

di
ffe

re
nc

e 
in

 fe
m

or
al

 to
rs

io
n 

(°
)

Figure 6. Bland-Altman plot comparing computed femoral torsion from the proposed method
to the gold standard - bias in green - 2SD in red
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Figure 7. Bland-Altman plot comparing computed femoral torsion from the proposed method
to [7] - bias in green - 2SD in red

4.2 Metrics accuracy

Compared to the literature the proposed method is the best compromise between simplicity
and robustness. Few studies deal with the entire femur. Among them, in term of points-to-
surface distances, they respectively obtained for the mean and 2 RMSE: [9] (1.0 mm, 1.35 mm)
[6, 7] (1.0 mm, 2.4 mm), [23] (1.1 mm, 2.8 mm), our method (1.0 mm, 1.6 mm).
Regarding the proposed 3D reconstruction, maximum errors appear on the inner part of great
trochanter, but this will not impact clinical parameters. Besides, femoral torsions measured
on cadaveric subjects are close from the values obtained with the previous method. We also
successfully applied our method in real conditions comparing the femoral torsions to those ob-
tained with [7] and didn’t notice any real differences between pathological and healthy patients.
However, the errors are a bit higher compared to cadaveric subjects. This might be explained
because of the variance cumulation of both methods.

As main limitation of this study, only the femur was considered and not the entire lower-
limb. Furthermore, shape accuracy has been only validated on DRR but we expect actually
even better results in real clinical environment since bi-planar images have higher contrast and
resolution. Finally, adjustment can’t be real time controlled yet since the whole process takes 3
min. in a non optimized MATLAB version.
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