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Abstract:  Trabecular bone tissue, vascular system, alveoli, polymer scaffolds, metallic foams 

absorbing impact energy, some minerals and rocks are examples of porous objects with 

pronounced micro-architectures. Last years, thanks to sudden development of X-ray 

tomography and micro-tomography, methods to quantify its anisotropy are frequently applied. 

Classical 2D methods are also expanded to 3D situations. Two very widely used methods, 

namely Mean Intercept Length and Line Fraction Deviation, have some drawbacks that users 

are usually not conscious. The source of the problem lies in the discrete (rasterized or 

pixelized) nature of computer images. This work is dedicated to improvement of both methods 

and overcome their limitations.  
 

 

1 INTRODUCTION 

The microstructure of composite and porous materials has a large influence on their global 

mechanical properties [1].  Adding reinforcements to the polymer matrix, such as for instance 

randomly distributed fly ash, can substantially change its effective mechanical behavior. In 

such a case, isotropic properties are usually obtained, that means values of mechanical 

properties are independent from the direction of mechanical testing. The situation becomes 

completely different when elongated reinforcements, such as fibers, are mainly oriented in the 

same direction. Consequently, the resulting mechanical properties of the material have a more 

complex anisotropy. In the case of porous materials, the situation is similar. Pores can be 

represented more or less accurately by ellipsoids. If the pores shapes are close to spheres and 

they are randomly distributed, then porous materials exhibit isotropic properties. On the other 

hand, if the pores are close to an ellipsoidal shape with a high ratio of their semi-axes arranged 

along specific directions, then the material becomes anisotropic. 

Porous materials with anisotropic properties are frequently encountered in biomechanics. 

This concerns mechanical properties of bones as well as diffusion properties of soft tissues 

[2,3]. As first explained by Meyer [4] and Wolff [5] in the second half of the 19th century, it 
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is because the inner structure of the bone tissue adapts to the local distribution of stresses and 

strains. Bone tissue has the ability to rebuild its microstructure to provide the most effective 

properties with the minimum weight. To predict the global behavior of such tissues, their 

micro-architecture must be studied. Knowledge of these properties has a major socioeconomic 

importance, because it enables the determination of bone quality and fracture risk in bone 

diseases and implant solutions [6]. The pioneering works on the evaluation of anisotropic 

microstructures already appeared before 1940. These methods were developed to measure and 

describe the internal structure of granular and porous materials. In polished cross-sections of 

such materials, the interface surface between the constituents becomes clearly visible. Samples 

of the material are studied with a microscope equipped with measuring grids consisting on 

parallel lines.  By counting how many times, for a given direction of grid lines, the sampling 

lines intersect with the interfaces, the material anisotropy can be quantified.  

In the last years, development of micro-computed tomography (µ-CT) gave a huge 

opportunity to study three-dimensional microstructures. Based on a series of 2D scans made at 

different angles and using computer algorithms, a complete reconstruction of the internal 

structure of the material can be done. There exist several methods enabling the description of 

material anisotropy from µ-CT data. The Mean Intercept Length (MIL) [7], Line Fraction 

Deviation (LFD) [8], Volume Orientation (VO) [9], Star Volume Distribution (SVD) [10] or 

Star Length Distribution (SLD) [11] belong to the most popular approaches. 

All these methods are very commonly used both in research and medical applications. For 

example, the quantification of trabecular bone tissue anisotropy is usually based on such 

approaches. The issues that concern these approaches will become more and more important 

with increasing resolution of the medical imaging systems. Another large field of use of the 

methods is to develop a relationship between morphology and mechanical properties of 

trabecular bone. For instance, Zysset [12] developed a tactic based on the MIL method. His 

methodology is still widely used. Also, the very popular free software ImageJ, with the BoneJ 

plugin for bone analysis, utilizes MIL method for anisotropy description. Usually, the 

imperfections found in the MIL or LFD methods only have a small influence on the final 

results. But in some special circumstances, they may lead to significant distortions of the 

anisotropy characterization. A large part of the authors using these methods is not aware of 

their glitches resulting from the numerical interpretation of the images on a computer. 

In this paper first, the bases of MIL and LFD methods are presented followed by the 

identification of their respective defaults related to the image pixelization. Next is devoted to 

the description of the improvements of these methods, which enable overcoming the identified 

problems 

2 ANISOTHROPY MEASURES 

2.1 Mean Intercept Length (MIL) 

 One of the most popular methods for determining the structural anisotropy of the 

material is the Mean Intercept Length method. Whitehouse [7] introduced first this method to 

quantify the anisotropy of materials consisting of two phases. To determine the value of MIL 

for a given image, one has to use a grid consisting of a series of parallel sampling lines covering 

the tested image (see Fig.1). Then for each line, the number of intercepts is calculated, namely 

the occurrences where the phase changes. As specified by the following formula, the measure 

of MIL, for a given angle ϕ, is the ratio of the whole length L of all the sampling lines divided 

by the entire number of phase change counts I(ϕ) of a given orientation: 

                                            𝑀𝐼𝐿(𝜙) =
𝐿

𝐼(𝜙)
                                                    (1) 
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Usually, the MIL(ϕ) values are calculated for line angles rotated every each 5° in the range: 

0≤ϕ≤180°. To obtain the full information on anisotropy, for 180°<ϕ≤360° the relation:  

MIL(ϕ)=MIL(ϕ-180°) is used. 

 

Figure 1: The idea of the anisotropy measurement with the MIL method. Two different positions of grid lines 

are presented. The numbers at the ends of sampling lines indicate the number of phase changes for each line 

(only changes from white to black phase are counted). 

Usually, the anisotropy of analyzed images is plotted on a polar chart. In this paper, the 

obtained anisotropy measures are normalized in the way that the maximum anisotropy value is 

equal to one and corresponds to the radius of the chart. The obtained graphs are next enveloped 

by an ellipsis. Obviously, isotropic structures are represented as circles on such plots. A strong 

anisotropy is depicted by narrow ellipses. The orientation of the long axis of the ellipsis a 

indicates the main direction of anisotropy. The degree of anisotropy DA is defined by the 

relation: 

                                                     𝐷𝐴 = 1 −
𝑏

𝑎
                                               (2) 

where b is the second (small) semi axis of the ellipsis.  

 

An example of anisotropy evaluation by the MIL method is presented in Fig. 2., where the 

radius of the plot is normalized by the maximal value of MIL. The qualitative interpretation of 

the results obtained by the MIL method is quite simple: the more flattened the ellipse on the 

plot, the stronger anisotropy on the image analyzed and the bigger the value of DA. As 

mentioned above, the main direction of anisotropy (stacking structures along one direction) is 

equivalent to the direction of the long semi-axis of the ellipsis. 

 

2.2 Line Fraction Deviation (LFD) 

  The Line Fraction Deviation (LFD) method was developed at the Department of Dental 

Radiology of ACTA, to measure the orientation on radiographic trabecular patterns. It was 

tested on archives of radiographs already existing at the department; the results were published 

by Geraets [13] and Korstjens [14]. Similarly, to the MIL method, in the LFD approach, a grid 

is applied. The difference is that, in the case of LFD method, the phase fraction is calculated 

for every line independently. The fraction should be understood as the ratio of the length of the 

image tested phase lying along the grid line, to the entire length of this line. After determining 

the phase fraction for all parallel grid lines at a given direction, a standard deviation of the 

fraction is calculated for each direction. This value of standard deviation defines the LFD value 
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calculated for each orientation angle Ф of parallel lines. Analogously as in the MIL method, 

one can represent the results in the form of a polar diagram (Fig. 3). 

 

 

Figure 2: MIL value as a function of the angle φ for a typical cancellous bone image. 

 

Figure 3: The idea of the LFD method. Several grids of sampling lines at various angles are presented. For each 

orientation, standard deviation of phase fraction for all lines is calculated. 

However, the charts obtained by these two methods can be significantly different.  Figure 4 

shows a comparison of both methods in the case of specially prepared testing images 

constituted of white ellipses and black background. 
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Figure 4: Comparison of anisotropy quantification by MIL and LFD methods for testing images. In the top row, 

the testing images are presented. In the middle and bottom rows are drawn the resulting MIL and LFD charts, 

respectively. 

It can be seen that MIL method only recognizes global anisotropy. For test image (a), both 

methods give similar results concerning the main direction of anisotropy but LFD detects also 

a vertical anisotropy that corresponds to the organization of white ellipses in columns. Test 

images (b) and (c) characterized by MIL are almost identical and predict a relatively low 

anisotropy. LFD method differentiates the main and secondary anisotropy directions. The main 

directions of anisotropy (LFD=1) are due to the global organization of ellipses. The secondary 

ones correspond to the local orientations and shapes of ellipses. Both methods are frequently 

used in spite of their specific drawbacks. 

3 PROBLEMS AND ISSUES 

3.1 Discretization problem in MIL method 

The main problem with the MIL method consists in its high sensitivity to the roughness of 

the boundary (interface line) between two phases. If a very rough boundary between phases 

lies along the grid line, it can cause a significant increase in the global number of phase 

changes, which is not always connected to real anisotropy (see Fig. 5). 

 

Figure 5: a) Rough object with sampling lines. The numbers on the ends of the lines indicate counts of the phase 

changes. b) Zoom on the rough boundary at the interface. 
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The problem is especially pronounced in the computer digital representation of the image 

where pixelization (or rasterization) leads to a rough boundary even if the real boundary is 

smooth. The roughness of the phase interfaces and sampling lines depends on the orientations 

of the object according to the image raster (Fig.6).  

The following color convention is adopted in this paper; the pixels constituting the scanning 

lines are marked in red if they are in the white phase and in blue if they are located in the black 

phase on the black and white prints, red will appear as dark gray and blue as light gray. 

 

 

Figure 6: a) Example of ideal ellipses in two different orientations with smooth edges and smooth sampling 

lines. b) Raster applied to the ideal image. c) Zoom of rasterized ideal image. The ellipses are in black. Pixels of 

sampling line lying outside the ellipses are painted red and pixels inside ellipses are in blue (dark grey and light 

grey respectively on B&W prints). For the top ellipsis, the MIL algorithm counts only two intercept points, 

whereas for the inclined one 12 intercept points) were found. 

Let's consider an ideal elliptical shape as one object embedded in a black background (see 

Fig. 7a and 7b). The two black and white images of this figure were prepared with the ellipsis 

oriented horizontally and counter-clockwise rotated 45° about its center. The dimensions of 

the images are 250 x 250 pixels. The anisotropy chart calculated by the conventional MIL 

method gives two different plots (Fig. 7c).  As expected, the second one is rotated 45° to the 

first one but the shapes of the two plots are significantly different. This is a straight example 

of the rasterization effect on the number of intercepts counts. 

 

Figure 7: Two phases images with a) vertical and b) 45°-rotated ellipsis. c) Anisotropy MIL plots for vertical 
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and rotated ellipses. d) Anisotropy MIL plots of rotated ellipsis for low and high resolution images. 

Also, the resolution of the images influences the results. In the next example, the rotated 

ellipsis image of Fig 7b was prepared in the high resolution of 2500 x 2500 pixels. The 

comparison of the plots for low and high-resolution images is shown in Fig. 7d. Higher 

resolution weakens the effect of rasterization, what is a common situation in raster graphics 

images.  

Another problem, which occurs in the MIL method, is the fact that the phase boundary may 

be straight and parallel to the lines of the grid. The results obtained strongly depend on the 

location of the sampling lines. The numerical, discreet representation of the image leads to the 

situation that two parallel or nearly parallel lines can cross each other periodically (Fig. 8). The 

value of the intervals, in which the straight lines cross, depends on the angle. For the angles 

being multiples of 45˚, this effect never occurs. For other slopes, the importance of the effect 

depends on the angle and the structure tested. Consequently, the MIL values have tendency to 

be diminished for all directions except of 45˚ and its multiples. 

 

Figure 8: The picture represents the simple linear border between two phases depending on the selection of the 

measurement grid. a) the best situation: border and sampling lines are parallel and 45° oriented b-d) an effect of 

the error caused by numerical representation of the straight line in the image depending on the orientation of the 

boundary. 

In MIL, only the changes between two phases are counted. In practice, any points with two 

neighboring pixels having different colors are treated as an interface between phases. The 

adverse location of pixelized line and pixelized phase boundary may lead to improper phase 

intersect counts. The described faults of the MIL method usually don't change the main 

directions of anisotropy but may have a strong influence on the shape of the anisotropy plot. 

Unconsciousness of the problem may be especially risky if comparing various images with 

different raster orientations or resolutions.   

 

3.2 Limitations of LFD method 

In LFD method, the analyzed area is always smaller than the images. Typical practice is to 

create square shaped regions filled with parallel sampling lines to provide that the grid is 

always entirely inside the image, independently of its orientation.  

This procedure causes that the tested area for a given angle is limited only to the square 

inside the circle whose diameter is equal to the edge of the image (Fig. 9). The regions on the 

image outside the circle are never analyzed and have no incidence on the anisotropy chart. 
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Figure 9: Appearance of the test grid used in the LFD method for two selected angles. The corners in light grey 

are never analysed by the method. The parts in dark grey are analysed only partially depending on grid 

orientation. 

Moreover, depending on the grid orientation, various parts of the image come into the 

analyzed square. It means that the results may be not consistent because the LFD computations 

for various angles take into account different regions. In consequence, the rotation of the 

structure may lead to different anisotropy charts. To verify this assertion, a numerical 

experiment has been done. The LFD chart was calculated for the structure presented in Fig. 

10a, next the structure was clockwise rotated 30° around the center and LFD chart was 

calculated once again. The results are presented in Fig. 10b. To facilitate the comparison, the 

second chart was rotated back by the same angle value. It's clearly visible, that the exact shape 

of the anisotropy chart depends on the orientation of the image even if the main anisotropy 

directions are preserved.  

Contrarily to the MIL approach, in the case of LFD, the pixelization issue is negligible. 

Indeed, using this method, only the number of pixels belonging to each phase is counted 

through the sampling line, what is almost insensitive to false pixels ordering in the intercept 

point. Thus, only the disadvantage of square limited area needs to be corrected in the LFD 

method. 

4 SOLUTIONS 

4.1 Enhancements of the MIL method 

Firstly, a simple solution eliminating both effects discussed in the previous section is 

proposed here. The idea is to ignore all pixels that are situated on the boundary. Because the 

area of near-phase boundary region is negligible comparing to the total area of the image, an 

appropriate mask can be created. The mask containing all pixels, having in the direct proximity 

pixels of two phases, is created. They are drawn in green in Fig. 11. In the improved method, 

the masked points are not considered  during counting. Figure 11 illustrates the improvement 

obtained using this approach. The number of phase changes in the image treated without 

masking (Fig. 11a) is 14 and if the pixels on the border are omitted (masked), the number of 

phase changes decreased to 6 (Fig. 11b). It is quite a big difference, which significantly reduces 

the MIL value for a given angle. 



Krzysztof Janc, Jacek Tarasiuk, Pawel Lipinski 

9 

 

 

Figure 10: a) The testing image used in all test in this paper; b) anisotropy chart calculated for the testing image 

in original orientation and 30° rotated. 

Secondly, using the improved MIL (i-MIL) method, the results for the tested images of Fig. 

7a and Fig. 7b are significantly different. The plots for the 45°- rotated and not rotated ellipses 

are presented in Fig 12a. Now, both elliptic shapes (in red and green) are almost identical. Also, 

the comparison of i-MIL charts for low and high-resolution images illustrated in fig. 12b proves 

that the improvement guarantees identical i-MIL shapes independently from the resolution 

used. 

 

Figure 11: a) An image showing how the number of phase changes varies on "rough" and pixelized edges. b) 

Corrected image with masked pixels in green. The green colour pixels were eliminated from the counting 

process. 

Finally, a good working method for anisotropy assessment should give similar shapes of 

anisotropy plots independently of the arbitrarily chosen orientation of the coordinate system. 

The orientation of the shape should follow the orientation of the coordinate system, but the 

shape itself should stay unchanged. The original and improved MIL are tested below for this 

feature. The testing image taken from computed tomography of the spongy bone (Fig. 13a) 

was rotated clockwise at 15˚ (Fig. 13b). For both images, the MIL and i-MIL plots were 

determined. To facilitate the comparison, the plots for the rotated images were rotated once 

again in the opposite direction. As it can be seen, the improved MIL method gives the same 

results independently from the rotation (Fig. 13d). It is not the case for the original MIL method 

(Fig. 13c) where the main direction of anisotropy is not kept and the shape of MIL function is 

different for images before and after rotation. 

 

4.2 Improvement of the LFD method 

In the improved LFD method (i-LFD), the whole area of the image is sampled independently 

of the scanning lines orientation. 

The main source of the problem is that the calculation of the standard deviation of the phase 

fraction along the sampling line required that all lines have the same length. Therefore, for the 

classical method, the analyzed area is reduced to the small square inside the circle inscribed in 

the image. The idea to overcome the problem is to substitute the usual standard deviation 
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calculation with a weighted standard deviation method.  

 

 

Figure 12: a) i-MIL plots for rotated and not rotated ellipses. b) i-MIL plots for rotated low and high-resolution 

ellipses. Only one plot is visible because of the superimposition. Please compare with Fig. 6 for not improved 

MIL. 

Let’s make a statistical digression. There are two ways to calculate mean value 𝑥̅ and the 

standard deviation s depending on the data set we analyze. If we have the raw data (using a 

statistics term) for a single population, we use the following equations: 

                                                     𝑥̅ =
∑𝑥𝑖

𝑛
                                                                          (3a) 

                                           𝑠 = √
1

𝑛
∙ ∑(𝑥𝑖 − 𝑥̅)2                                          (3b) 

In these equations, index i enumerates elements of population and n is the number of 

elements in population.  

A different situation is met if our population is divided into several subpopulations with 

various numbers of elements in each one. In this case the equations below should be used: 

                                             𝑥̅𝑊 =
1

∑𝑛𝑘
∙ ∑ 𝑛𝑘 ∙ 𝑥𝑘̅̅ ̅                                        (4a) 

                                       𝑠𝑊 = √
1

𝑁
∙ ∑

𝑛𝑘

∑𝑛𝑘
∙ (𝑥𝑘̅̅ ̅ − 𝑥̅𝑊)

2                              (4b) 

Symbols 𝑥̅𝑊 and 𝑠𝑊 represent weighted mean value and weighted standard deviation 

respectively. Capital N counts number of subpopulations, nk is a number of elements and 𝑥̅𝑘 is 

a mean value in a subpopulation k. Please do not confuse the number of subpopulations N and 

the sum of all nk which corresponds to the number of all elements in each subpopulation. 

The weighted standard deviation (eq. 4b) is used when it is needed to calculate the standard 

deviation of a set of data that are not equally significant. This method is applied, for example, 

to calculate the average salary in the European Community countries and standard deviation 

of this value. The average salary and its standard deviation in each of the countries should first 

be calculated using equations 3a and 3b. Next, the average salary in EC is determined according 

to equation 4a and the standard deviation according to equation 4b. 

The same idea is applied to improve LFD method. The sampling lines are crossing the whole 

image independently of the direction (Fig. 14a). Of course, in this case, sampling lines have 

various lengths (like countries have various numbers of citizens). The new attempt to i-LFD 

determination is to calculate the standard deviation of the phase fraction for each angle of 

sampling lines but taking into account weighting factors, which are proportional to every single 

line length normalized by the sum of length of all lines. To verify the i-LFD method, a similar 

test as for i-MIL validation was performed. Namely, the method was applied to two identical 
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images but rotated 30⁰ one to another. After that, to facilitate the comparison, one of the 

anisotropy plots was rotated back. The resulting plots are shown in Fig. 14b. Two advantages 

are offered by the new proposition:  for all angles of sampling lines, the entire sample is always 

analyzed and the rotation of the image has a much smaller influence on the i-LFD chart that it 

had in the case of classical LFD method the results of which are illustrated by Fig 10. 

 

Figure 13: Influence of the image rotation on the results of the anisotropy assessment. The results for the rotated 

image (in both cases) were rotated back for an easier comparison: a) testing image, b) the same image rotated 15 

degrees clockwise, c) original MIL plots, d) improved MIL plots. 

 

Figure 14: a) Appearance of the test grid used in the improved LFD method for a selected 

angle. All areas of the image are always analyzed independently from the orientations of 

scanning lines.; b) i-LFD (improved LFD) method results. 

5 SUMMARY 

Some important drawbacks of the classical methods for anisotropy determination, namely 

MIL and LFD, have been identified.  Improvements have been proposed to overcome these 

insufficiencies. Firstly, a masking operation has been introduced in the i-MIL method to 

significantly eliminate the phase boundary roughness as well as the rasterization effects. There 

is a situation where the improved method should be used with care. For instance, in the case 
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where the image only contains small objects with the size of 1-3 pixels the whole structures 

may be masked. Such a configuration is however without any practical interest. Secondly, the 

weighted deviation calculated in i-LFD algorithm has shown to guarantee that the whole image 

area is analyzed for all scanning line directions.  

Finally, for both improved methods proposed, anisotropy charts for the same original and 

rotated structures, are more similar than for classical algorithms. 
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