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Abstract: Medical imaging techniques have been widely used in the diagnosis and treatment
of many diseases, such as magnetic resonance imaging, computed tomography, mammography,
ultrasonography, and photon emission tomography. Their main purpose is to enable the visu-
alization of internal anatomic structures, such as organs and tissues, for clinical procedures.
Resampling is required for certain medical tasks, for instance, registration and reconstruction,
which occur when images or volumes are scaled, translated or rotated. The result of the re-
sampling depends on the interpolation filter. In this paper, we develop and analyze a novel
three-dimensional Lanczos resampling method in the context of medical imaging.

1. INTRODUCTION

In the context of numerical analysis, interpolation techniques [12–15, 19, 21–23] aim to con-
struct new data points from a set of known samples. In the field of image analysis, resampling
techniques [9, 21, 23] transform a sampled image from one coordinate system to another.

Resampling is typically employed to create a new version of an image with a different
dimension. The increase and reduction of an image are called upsampling and downsampling,
respectively.

Image interpolation and resampling techniques play an important role in several biomed-
ical applications, such as data reslicing, image registration, tomographic reconstruction, and
volumetric rendering [23]. In these tasks, magnification or rotation of a region of interest in
an image is commonly used to provide more appropriate biomedical data representations for
analysis and visualization purposes [3–5, 20].

Several methods for image interpolation have been proposed in the literature [8, 11, 27], for
instance, nearest neighbor interpolation, bicubic interpolation, bilinear interpolation and spline
interpolation, which demand different computational costs and provide distinct levels of quality.
In this work, we introduce and analyze a novel three-dimensional Lanczos resampling method
in the biomedical context.

This text is organized as follows. Some relevant concepts and approaches related to the
topic under investigation are briefly presented in Section 2.. The proposed resampling method
is described in Section 3.. Experimental results are presented and discussed in Section 4.. Some
final remarks and directions for future work are outlined in Section 5..
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2. BACKGROUND

Interpolation of sampled data is a common task required in several medical image process-
ing operations, for instance, magnification, rotation, warping, registration, among others.

Various techniques for image interpolation have been developed over the last decades [8,
11, 21, 23, 27]. These techniques play an important role in the development of analysis and
visualization algorithms for two- and three-dimensional medical data [7, 17, 24].

In order to generate a final image, the interpolation methods may employ a different number
of sampled points. Level of quality and computational time are two important factors that affect
the results when distinct interpolation methods are used.

Nearest neighbor interpolation is a multivariate method for approximating the value of a
function for an unknown point as the value of its nearest point. Although it is a fast method, the
nearest neighbor interpolation may result in jagged edges.

Trilinear interpolation is a multivariate interpolation technique that operates on a three-
dimensional regular grid, which approximates the value of an intermediate data point (x, y, z).
The method employs the eight nearest points on the grid along x, y and z directions to linearly
approximate the value of the data point.

Tricubic interpolation [16] obtains values at arbitrary points on a three-dimensional regular
grid. The method requires the approximation of a function expressed as

f(x, y, z) =
3∑

i=0

3∑
j=0

3∑
k=0

aijkx
iyjzk (1)

where aijk are coefficients that must be determined based on the data. The tricubic interpolation
preserves fine detail in the output image, however, it demands more processing time.

3. METHOD

Lanczos resampling [6, 10, 18] is a 1-D interpolation method based on the Lanczos kernel,
which is dynamic and must be calculated for each value to be interpolated, expressed as

S(x) =

bxc+a∑
i=bxc−a+1

siL(x− i) (2)

where x is a real value to be interpolated, a is the filter size, and L(x) is

L(x) =

{
sinc(x) sinc(x/a) if − a < x < a,

0 otherwise
(3)

Lanczos resampling is a separable filter, which means that it is possible to first apply it in
the horizontal direction, then in the vertical direction and, finally, in the depth direction to be
used in the 3D interpolation. Since the kernel may have negative values, the range of values
of the output image may be wider than the input image. Therefore, the output image must be
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rescaled after the interpolation process in order to obtain the same value interval as the input
values.

Algorithm 1 presents the main steps of the proposed interpolation method. The algorithm
takes as input a volumetric image, the position to be interpolated, and the value of a, which
indicates the size of the filter (equal to 2a−1). Two arrays are created (tempx and tempy) that
temporarily store the interpolation performed in the x-direction, then in the y-direction.

Between lines 10 and 20, the interpolation in the x-direction is performed. Lines between 21
and 29 perform interpolation in the y-direction using previously calculated interpolation values
(tempx). Finally, it is performed in the z-direction using the values of tempx (interpolation
values on the y-axis). Finally, the interpolation value is returned.

This process is illustrated in Figure 1. The objective is to calculate the interpolation for
the point at position (1.5, 1.5, 1.5). Initially, the plane where X = 1.5 is computed, that is,
the interpolation in the X direction. Such points are shown in red color in the figure. It is
possible to observe that only the X values are equal to 1.5, whereas coordinates Y and Z are
integers (0, 1, 2, 3, 4, 5). Then, the interpolation in Y direction is calculated. In this case, points
at X = 1.5 and Y = 1.5 are computed, which corresponds to a line that intercepts the plane
X = 1.5. Such points are shown in green color in the figure. Finally, the value at position
(1.5, 1.5, 1.5) is computed, which is the blue point that intercepts the line X = 1.5 and Y = 1.5
at position Z = 1.5.
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Figure 1. Illustration of the three main steps for calculating the 3D Lanczos interpolation.

In our experiments, we observed that a = 2 (the filter size) can generate images with ringing
artifacts, which did not occur with a = 3 or a = 4. We used several data sets to demonstrate the
effectiveness of the proposed approach. Results were compared with nearest neighbor, trilinear
and tricubic interpolation methods.

3



Thiago Moraes, Paulo Amorim, Jorge Silva, Helio Pedrini

Algorithm 1 Lanczos Interpolation
INPUT: Image (volumetric image)
INPUT: x, y, z (position to interpolate)
INPUT: a (Lanczos a)
OUTPUT: The interpolated value

1: xi← bxc − a+ 1
2: xf ← bxc+ a
3: yi← byc − a+ 1
4: yf ← byc+ a
5: zi← bzc − a+ 1
6: zf ← bzc+ a
7:
8: size← a ∗ 2− 1
9: tempx[size][size]

10: tempy[size]
11: m = 0
12: for k = zi to zf do
13: n = 0
14: for j = yi to yf do
15: for i = 0 to xf do
16: tempx[m][n] += image[i, j, k] * L(x - i, a)
17: end for
18: n++
19: end for
20: m++
21: end for
22: m = 0
23: for k = zi to zf do
24: n = 0
25: for j = yi to yf do
26: tempy[m] =tempx[m][n] * L(y - j, a)
27: n ++
28: end for
29: m++
30: end for
31: m = 0
32: for k = zi to zf do
33: value += tempy[m] * L(z - k, a)
34: m++
35: end for
36: return value
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4. EXPERIMENTAL RESULTS

Experiments were performed comparing nearest neighbor, trilinear, tricubic and Lanczos
(with a = 3 and a = 4) interpolation methods. In these experiments, a geometric scaling
transformation was used to reduce the volumetric medical images by half (scale of 0.5) and
then another scale to duplicate the image (scale of 2.0). The same interpolation method was
used in the two scaling transformations.

The result of these two transformations was then compared to the original volumetric image
using the Structural Similarity (SSIM) metric [25]. The SSIM metric varies in the range [−1, 1],
where the value 1 indicates that there is no difference between the two data sets. The experi-
ments were conducted on the Goudurix and Manix images [2] and Chest, Clavicle, Cranium,
Feet, Fox and MRI T1 [1]. The results of these experiments are available in Table 1. The best
SSIM values are highlighted in bold in Table 1.

Table 1. Comparison of SSIM results for nearest neighbor, trilinear, tricubic and Lanczos (a = 3
and a = 4) interpolation methods by initially scaling a volumetric by half and then by two

compared to the original one.

Model Nearest Trilinear Tricubic Lanczos
Neighbor a = 3 a = 4

Goudurix 0.9984416 0.9998742 0.9999394 0.9999169 0.9999357
Manix 0.9987755 0.9998514 0.9999105 0.9998855 0.9999117
Chest 0.9988911 0.9998576 0.9999103 0.9998914 0.9999133
Clavicle 0.9987620 0.9997331 0.9998004 0.9997795 0.9998067
Cranium 0.9966246 0.9994788 0.9996321 0.9996222 0.9996422
Feet 0.9985482 0.9997178 0.9998197 0.9998071 0.9998499
Fox 0.9986468 0.9998103 0.9998872 0.9998497 0.9998575
MRI T1 0.9961121 0.9986351 0.9987272 0.9986532 0.9985971

From Table 1, it is possible to observe that the Lanczos method with a = 4 obtained superior
results for Manix, Chest, Clavicle, Cranium and Feet data sets. In the other cases, the tricubic
method performed better. It is also possible to verify that, in none of the cases, the Lanczos
method with a = 3 achieved better results than the tricubic method. However, the Lanczos
a = 3 method obtained better results in all cases when compared to the trilinear and nearest
neighbor methods.

Figure 2 illustrates the original image (corresponding to slice 301) and the results after
applying the five tested interpolation methods. The result for the nearest neighbor interpolation
presents certain loss of details compared to the original image, as well as aliasing problems.
In the trilinear interpolation, the effect of image smoothing is noticeable. In region 1 (labeled
in the original image), the image smoothing made the bone protrusion narrower and closed the
hole. In region 2, the hole is larger than in the original image. In region 3, the higher degree
of smoothing is noticeable. The effect of smoothing in the tricubic interpolation method is less
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noticeable. In region 1, the tricubic method did not narrow the protrusion between the bones,
however, was able to close the hole. In region 2, the hole increased a little bit. The image
smoothing affected region 3. The Lanczos methods (a = 3 and a = 4) did not narrow the gap
between the bones in region 1 and preserved part of the hole. In region 2, the hole increased a
little bit, similarly to the other methods. In region 3, the Lanczos methods also smoothed the
area, however, the edges are slightly more preserved than in the other methods.

Experiments were conducted using frames of cell division time lapse videos extracted
from [26]. For the experiment, the frames were reduced in 1

4
by taking one every four frames.

Then, the intermediate frames were regenerated using a geometric scaling transformation in the
temporal direction, that is, increasing the number of frames, not the resolution of the frames. In
addition to the geometric transformation, several interpolation algorithms were applied: trilin-
ear, tricubic and Lanczos (with a = 3 and a = 4). Then, the interpolated frames were compared
with the original frames. Table 2 summarizes the results, where the comparison metric is the
Mean Square Error (MSE). The lower the MSE value, the closer the images are. The best MSE
values are highlighted in bold in Table 2.

Table 2. Comparison of MSE results for trilinear, tricubic and Lanczos (a = 3 and a = 4)
interpolation methods.

Model Nearest Trilinear Tricubic Lanczos
Neighbor a = 3 a = 4

DKWH7_L10 2512.44 2132.93 1847.33 1736.53 1726.70
DKWH7_L1 4314.23 3609.43 3311.63 3214.00 3216.03
DKWH7_L15 2532.01 2215.70 1939.61 1864.37 1870.41
DKWH7_L19 1623.58 1310.97 1332.40 1613.68 1770.36
DKWH7_L6 4688.67 3976.92 3547.25 3279.69 3198.15
DKWH7_L4 6260.87 5144.85 4690.35 4406.36 4310.74
DKWH7_L3 2603.42 2197.08 1919.24 1803.28 1789.05

As observed in Table 2, the Lanczos interpolation method achieved superior overall results,
that is, it generated intermediate frames closer to the original ones. The trilinear method pro-
duced the best results only for the DKWH7_L19 model. In this model, the Lanczos methods
were surpassed by the tricubic method, whereas the Lanczos method with a = 4 was surpassed
by the nearest neighbor interpolation. In all other cases, the Lanczos methods produced better
results. Unlike the results shown in Table 1, Lanczos interpolation with a = 3 obtained better
results in some models when compared to Lanczos with a = 4. Since the difference between
the two Lanczos interpolation methods is small, it may be more advantageous to use Lanczos
with a = 3 because it is faster than Lanczos with a = 4.
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(a) original (b) nearest neighbor

(c) trilinear (d) tricubic

(e) Lanczos a = 3 (f) Lanczos a = 4

Figure 2. Results for Manix data set obtained with different interpolation methods.
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5. CONCLUSIONS AND FUTURE WORK

We introduced and analyzed a three-dimensional Lanczos resampling method for medical
images. Experiments conducted on volumetric data sets demonstrated the effectiveness of the
proposed method compared to nearest neighbor, trilinear, tricubic interpolation techniques.

The assessment of the results was performed through Structural Similarity (SSIM) and Mean
Square Error (MSE) metrics. The results demonstrated the potential use of our method for the
interpolation of medical images and the generation of intermediate frames in cell division time
lapse videos.

As directions for future work, we intend to test larger size values for the filter in the Lanczos
method, extend other three-dimensional interpolation techniques to four dimensions, as well as
apply the methods to several other medical volumetric data sets.
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