
15th International Symposium on Computer Methods in Biomechanics and Biomedical Engineering 

and 

3rd Conference on Imaging and Visualization 

CMBBE 2018 

P. R. Fernandes and J. M. Tavares (Editors) 

 

 

RESTING STATE FMRI FUNCTIONAL CONNECTIVITY ANALYSIS 
USING SOFT COMPETITIVE LEARNING ALGORITHMS 

Alberto A. Vergani*, Elisabetta Binaghi*, Samuele Martinelli*, Sabina Strocchi† 

*University of Insubria, Department of Theoretical and Applied Science (DiSTA) 

Varese 

aavergani@uninsubria.it 

elisabetta.binaghi@uninsubria.it 

smartinelli@uninsubria.it 

 
†Ospedale di Circolo e Fondazione Macchi, Medical Physics 

Varese 

sabina.strocchi@asst-settelaghi.it 

Keywords: RS-fMRI, Functional Connectivity, Clustering, Soft Competitive Learning. 

Abstract:  RS-fMRI data analysis for functional connectivity explorations is a challenging 

topic in computational neuroimaging. Several approaches have been investigated to discover 

whole-brain data features. Among these, clustering techniques based on Soft Competitive 

Learning (SCL) have been shown effective in providing useful information in various contexts. 

However, although significant achievements have been reached, these techniques still present 

critical aspects that require further investigations. We selected three clustering algorithms, i.e. 

Self-Organizing Maps (SOM), Neural Gas (NG) and Growing Neural Gas (GNG), to study the 

intrinsic functional properties of images coming from a shared repository of resting state fMRI 

experiments (1000 Functional Connectome Project, i.e. Oxford dataset). To compare the 

functional connectivity based on soft clustering, we calculated the Seed Based Linear 

Correlation (SBLC) to study the Default Mode Network (DMN) functionality, i.e. we found that 

Precuneus L/R has the higher Correlations Coefficients with its controlateral part and with 

the posterior division of Cingulate Gyrus. The differences among the three soft clustering 

algorithms adopted were measured basing on Jaccard Similarity Coefficient (JSC), whereas 

the quality of clusters has been evaluated with Davies-Bouldin Index (DBI). The optimal 

clustering computation was with 2 partitions for all the algorithms. We obtained the following 

results: a) clusters differentiated the amplitude of BOLD signals for both Males and Females, 

i.e. low level signal vs high level signal; b) clusters also differentitated the quality of seed-

based correlations, i.e. strong (positive) associations vs weakly associations. These 

multivariate outcomes highlighted the complementarty usage of clustering algorithms with 

statistical signal processing: the first made the partions, the last explain the partions.   
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1 INTRODUCTION 

The main goal of our study is to integrate different methodologies useful to discover and to 

explore the inner properties of brain signals, with application to resting state BOLD time series 

in healthy subjects. The motivation of our study emerges in relation to a recent work published 

by Biswal et al. [1], that highlighted a universal architecture of functional connections in the 

brain resting state networks, with age and sex as significant determinants. The specific goal of 

our analysis was to evaluate the following points: 1) if there is a between gender functional 

variability, i.e. if there is a statistical BOLD signal difference between males and females, 2) 

if there is a within gender functional variability, i.e. if male and female exams have different 

spread, and 3) if there is a confirmation of some interesting functional connectivity networks. 

In particular, our intent was to extend this conclusion with clustering algorithms to find 

similarities in time series (signatures) or in activation patterns (exams).  

 

Approaching the general fMRI signal processing with data-driven methods is a challenging 

application (cfr. works by Lachiche [2] and Liao [3] for an overview and Vergani et al [4] for 

our recent work with clustering techniques); data-driven methods are used as well in the resting 

state paradigm in functional neuroimaging (cfr. papers by Margulies [5], Van Den Heuvel [6], 

Lee [7], and Wang [8]). For this purpose, we adopted as data driven methods the soft 

competitive learning algorithms to explore the natural partitions of the data (cfr. [9] and [10]). 

We choose Self Organizing Map (SOM), Neural Gas (NG) and Growing Neural Gas (NNG), 

that are a soft class of unsupervised artificial neural networks.  

 

SOM are models initially proposed by Kohonen [11] and they are widely used because they 

allow the representation of data in a low-dimensional space, preserving the topological 

properties of the entrance space. SOMs are single-layer feedforward neural networks where 

output neurons are organized into low-dimensional grids (typically 2D or 3D spaces). The 

number of clusters that will be created is defined a priori. 

 

NG is an alternative approach to SOM networks [12] [13]. The name derives from the fact that 

the neurons in the data space are moved as particles of a gaseous element, all negatively 

charged.  Neurons repel each other, occupying the surrounding space, but they are attracted by 

areas of high data density as if the latter are positively charged particles. The NG algorithm is 

part of the soft competitive learning family, where not only the winning unit is adapted after 

the presentation of an input data, but also the remaining units. Unlike the SOM algorithm, no 

fixed topology is imposed on the network, the neurons are not arranged on the grid (they are 

free in space).  Learning is performed according to a leaky learning strategy, by updating not 

only weight vectors of the winner neurons but also weight vectors of all losing neurons with a 

smaller rate that decreases in function of the increasing distance with the current input data. 

 

GNG algorithm is an extension of NG and it was developed by Fritzke [14] [15]. Given a 

certain distribution of input data in the real domain, GNG incrementally creates a graph, or a 

network of nodes, where each node in the graph has a position in Rn. GNG is an adaptive 

algorithm because if the distribution of input data changes over time, GNG can adapt, that is 

to move the nodes in order to adapt to the new distribution. In this graph the number of nodes 

is increased incrementally starting from two initial nodes. The nodes are considered neighbors 

if they are connected by an edge, and the neighborhood information is maintained during the 

execution of the algorithm basing on a variant of the standard Competitive Hebbian learning 
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(CHL). The big difference compared to SOM and NG is that it is not necessary to establish 

previously the number of a priori nodes (clusters) since the nodes are added incrementally 

during execution. An edge is associated to each node that, through a vector, represents the 

position in the node space. The edge has an associated age variable and a local error variable 

that has the purpose to indicate the insertion point of a new node. GNG is an algorithm with 

many parameters and it is complex. Its strong point is the adaptation of nodes that can also be 

deleted. This allows to free users of the burden of choosing a priori the number of clusters. 

The weak point is the difficulty in finding the optimal value for the all the parameters involved. 

 

Keeping in mind the peculiarities that have these clustering algorithms, we want to understand 

with more details the features of the elements partitioned. In other word, we decided to 

complement the clustering outcomes with the classical signal processing methodologies 

adopting methods able to analyse the temporal dynamic of the BOLD brain signals and the 

spatial features related to specific regions of interest. Also, we studied the functional 

associations across the brain regions about the spontaneous signal fluctuations depending by 

the resting state fMRI experimental paradigm.  

 

Therefore, we first approach the resting state signals with standard tools for image processing 

making filtering, motion correction, standard registrations, labelling and data reduction 

procedures. Then we integrated measures of strength/weakly signals association to investigate 

– in general – the cross correlations between all-ROIs with all-ROIs, and – precisely – the cross 

correlation with all-ROIs and two seeds: Left and Right Precuneus, that it is a bilateral region 

that has a role of central hub in the so-called Default Mode Network (DMN) (cfr. the historical 

work by Biswal [16] [17] and for the anatomo-functional details about the brain resting 

network cfr. Raichle et al [18] [19] or Utevsky et al [20] and also the work by Van Den Heuvel 

where he shown alternative to DMN [21] and work by Iraji [22] for technicalities about the 

resting state connectivity-domain analysis). 

 

The general aim of this study is to address the functional connectivity problem in the resting 

state neuroimaging using both classical signal processing methods and soft clustering 

techniques.  In the next sections, we propose and justify the type of data we have selected from 

a repository specialized in resting state functional neuroimages; then we present methods, 

results, discussion and conclusions. 

 

2 DATA 

 

Within the NITRC repository (https://www.nitrc.org/) and the 1000 Functional Connectome 

Project (http://fcon_1000.projects.nitrc.org/), we selected the Oxford dataset with 22 healthy 

subjects (12M /10F; ages 20-35). The fMRI parameters were the following: TR = 2, slices = 

34, time-points = 175, magnet = 3 [T]. The selection of this dataset is motivated by the nice 

age balance and the small age spread that have the subjects. Furthermore, we selected this 

dataset because was one used by Biswal et al to discover resting state functional properties and 

their gender determinants. Therefore, our approach is also a confirmatory data analysis. 
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3  METHODS 

The methods we used followed this pipeline: image processing, data reduction, statistical 

analysis and algebraic measurements, functional connectivity investigations with linear 

correlation and soft competitive clustering techniques.  

 

Image Processing Image preprocessing was done with the functions for resting state image 

analysis contained in the software FSL [23]: we did spatial filtering with 3 [mm] of smoothing, 

frequency filtering with a high pass filter having 1/100 [Hz] as cutoff frequency, motion 

correction and standard registration with a reference atlas MNI152 (2mm). The ROIs labelling 

was done with the Harvard-Oxford atlas with 96 lateralized labels.  

 

Data Reduction For both Females and Males, we did temporal signal reduction, spatial signal 

reduction, and whole brain signal reduction; i.e. the temporal data reduction was done with the 

extraction of mean and standard deviation of BOLD signals according to each time points, 

whereas the spatial reduction was the same but according to each atlas ROIs; the whole brain 

reduction is the global average of mean and standard deviation obtained by temporal reduction, 

with the aim to have two macro-signals, one for Females and one for Males.  

 

Descriptive Statistics To investigate if Females and Males are samples coming from different 

populations, we tested the mean and the standard deviation of the whole brain signals with 

parametric (one-way ANOVA) and non-parametric test (Kruskall-Wallis); we choose both 

kind of tests because we have globally 22 subjects and some ANOVA assumptions are difficult 

to sustain; therefore, we preferred to compare the parametric results with the non-parametric 

outcomes, that had mild assumptions.   

 

Algebraic Distances To compute metrics, we needed another step of data reduction: we 

averaged the spatial reduction results to have one value for each ROI, i.e. each exam became a 

vector with 96 components; then we measured how far are exams in vectorial forms from each 

other using Euclidean metric and Manhattan/Taxi-cub metric. 

 

Correlations To study the brain functional connectivity, we used the Pearson’s linear 

Correlation Coefficient (CC) applied to all-ROIs versus all-ROIs and applied to seed versus 

all-ROIs; the seeds we used were Precuneus Left and Right, according to the anatomical 

architecture of Default Network Mode, as a model for the brain resting state paradigm; we 

selected only the higher or the lesser seed correlation results according to specific cut-off, i.e. 

CC > 0.8 or CC < -0.8 and -0.2 < CC < 0.2, respectively, in order to evaluate strong 

(positive/negative) associations and weakly/absent associations with the seed.  

 

Clustering To investigate brain resting functionality using unsupervised learning algorithms, 

we used Self Organizing Map (SOM), Growing Neural Gas (GNG) and Neural Gas (NG), i.e. 

to set GNG, we adopted 10 nodes, 1000 iterations, λ = 2, εb = 0.0005, εn = 0.00001, α = 0.05, 

δ = 0.995, age-node = 60. To set NG, we used 2 nodes, 500 iterations, tmax = 8000, εinitial = 0.90, 

εfinal = 0.50, λinitial = 10, λfinal = 1, Tinitial = 5, Tfinal = 10. To evaluates the optimal partitions with 

the three clustering methods, we adopted Davies-Bouldin separation measure [24] and we 

compared the selected partitions with Jaccard similarity measures.    
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4  RESULTS 

The results we obtained regard the statistical descriptions of resting state fMRI data, the 

algebraic measures of fMRI in vectorial forms, the functional connectivity studied with the 

Pearson linear coefficient correlation in both the conditions (all-ROIs vs all-ROIs and Seeds 

vs all-ROIs) and the general outcomes of the three clustering techniques with their comparison 

with the classical statistical signal processing approach. 

 

Statistical descriptions of fMRI data The temporal analysis of RS-fMRI exams indicated that 

Females had the higher values for both the average and the standard deviation of the BOLD 

signals (cfr. Figure 1 - top); the spatial analysis revealed that Females and Males were similar 

for the average signals, but Females had more standard deviation (cfr. Figure 1 - bottom); both 

one-way ANOVA and Kruskall-Wallis test proved that there are statistical differences between 

males and females (p-value ≤ 0.05) for the mean and the standard deviation of the whole brain 

RS-fMRI signals, i.e. Females have greater mean and a greater variance than Males (cfr. Figure 

2 - top).  

 

Algebraic measures of fMRI data Euclidean and Manhattan/Taxi-cub distances estimated 

that Females are more far from each other than Males, for both the mean and the standard 

deviation of the measures (cfr. Figure 2 - bottom).  

 

Clustering validations and outcomes comparison Davies-Bouldin separation index (DB) 

indicated that SOM, NG and GNG reached the best data partitions with two clusters (cfr. Figure 

3 - top). The Jaccard index computed for all the pairs (NG vs GNG, SOM vs GNG, SOM vs 

NG) in both Females and Males showed that the more similar clustering was in Males and 

Females between NG and GNG (cfr. Figure 3 - bottom). 

 

Functional Connectivity with Linear Correlation Pearson’s linear Correlation Coefficient 

(CC) applied to all-ROIs quantified that there is a difference between gender, i.e. Females had 

more negative correlations then Males, but they shared common positive correlations (cfr. 

Figure 4 – top – the left plot). Instead, the seed-based Correlation Coefficient (CC), with Left 

and Right Precuneus as seeds, shown that all the subjects had principally positive correlations, 

with a little presence of anti-correlation in Females (cfr. Figure 5 – top – the central and the 

right plot). Apart general comments about strength and weakly associations, it is remarkable 

the presence of the specific seeds weakly correlations, especially for the L/R Posterior Division 

of the Temporal Gyrus (ROI 29 and ROI 30) and for the L/R Anterior Division of Temporal 

Fusiform Cortexes (ROI 73 and ROI 74); also, it is remarkable the highest seeds positive 

correlation, especially for the L/R Cingulate Cortexes (ROI 59 and ROI 60) and with the 

controlateral part of the seed, the L/R Precuneus (ROI 61 and ROI 62) (cfr. Figure 5 - the 

correlation matrixes) 

 

Functional Connectivity with Soft Competitive Clustering The two optimal clusters 

distinguished the quality of correlations for both the seeds (Precuneus Left and Right) analysis 

in Females and Males, i.e. strength (positive) coefficients and weakly coefficients were always 

mismatched in separated clusters (cfr. Figure 6 and Figure 7). We also noticed some 

overimposition for the central values of the coefficients. Furthermore, the two clusters 

discriminated the amplitude of BOLD signals, i.e. low and high intensities were mismatched 

as well in both Females and Males (cfr. Figure 4). 
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Figure 1. Plots of the average and the standard deviation of BOLD signals in Males and Females in the temporal 

(175 time-points versus BOLD signals) and spatial domains (96 ROIs versus BOLD signals). Both the average 

and the standard deviation of BOLD signals in the temporal domain are quite different between gender: Females 

have higher values then Males; whereas, in the spatial domain, both Males and Females have similar average 

BOLD signals, but Females have more standard deviation of BOLD signal.  

 

 

Figure 2. In the top part of the figure, there are the boxplots of whole brain signals in Males (1) and Females (2), 

showing the between gender statistical difference of the average (left) and the standard deviation (right) about the 

whole brain signals: in the both cases, Females have higher values then Males. In the bottom part of the figure, 

there are the within gender distance measures of the exams: with both Euclidean and Manhattan distances, 

Females have higher values then Males for the mean and the standard deviation of the distances computed.   
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Figure 3. The top diagram shows the optimum Davies-Bouldin index associated to SOM, NG and GNG 

algorithms, for both Females and Males: all the DB are referred to 2 clusters as optimal clusters number for each 

algorithm; all the best indexes are under 1; the lesser is related to the fourth Males subject, and the higher to the 

fourth Female subject.  The bottom histogram represents the discrete distribution of the Jaccard index computed 

for all the algorithm pairs: the more similar clustering outcomes are with the NG-GNG pairs in both Females and 

Males (Jaccard < 0.3), and the other clustering combinations are very different (Jaccard > 0.7). 

 

Figure 4. The scatter plots show the clustering outcomes for NG, GNG and SOM in Females (red points) and 

Males (blue points): the main result is that, using two clusters as optimum partitions number, the clusters detect 

the amplitude information of BOLD signals in Females and Males, i.e. clusters differentiate low levels and high 

levels in BOLD signals.    
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Figure 5. In the upper part of the figure, there are the Correlation Coefficients (CC) distributions between all-

ROIs versus all-ROIs in Males and Females, and the correlation coefficients distributions between seeds (L/R 

Precuneus) versus all-ROIs. In the first discrete distribution, there are present positive and negative correlations, 

both in Males and Females; whereas, in the seeds based correlations distributions, there are less anti-correlations, 

with always, a bit gender difference. In the bottom part of the figure, there are the seed-based correlation matrix 

between Left and Right Precuneus in Males and Females: it is evident the strong correlation with many brain 

regions, as well as weak correlations with few brain regions. The highest positive correlations (CC > 0.8) are with 

seed-controlateral region (ROI 61 and ROI 62) and L/R Posterior Division of Cingulated gyrus (ROI 59 and ROI 

60). The lowest correlations (CC +/- 0.2) are with L/R Posterior Division of Temporal Gyrus (ROI 29 and ROI 

30) and with the L/R Anterior Division of Temporal Fusiform Cortexes (ROI 73 and ROI 74). 
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Figure 6. These figures represent the organization of the two optimal clusters in Males and Females in relation to 

the seeds based (L/R Precuneus) Correlation Coefficient. In the left column, it is reported the evidence that low 

and high correlations belong to different clusters, with some overimposition between them for the central values. 

The central and the right columns show the relation between ROIs, correlation coefficients and clusters, showing 

precisely that low and high correlations are within different clusters in Males and Females. 
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Figure 7. The image shows a detailed result of SOM algorithm in the Males case, with a specification about the 

higher and the lower correlations with both the seeds (Left and Right Precuneus), and their organization within 

the two clusters. In the left side of the figure, the brain is represented with the centre-of-mass of each regions of 

interest (the 96 ROIs labelled with Harvard-Oxford atlas), that are filled or unfilled if they belong to cluster 1 or 

2. The coloured circles are the height selected regions that are, respectively, the four with the higher correlations 

(hot colours), and the four with the lower correlation (cool colours). In the right side of the figure, there is a plot 

with the clusters planes in relation to their elements: the four higher correlations regions are on the plane of cluster 

1, whereas the four lower correlation are on the plane of cluster 2. We choose to plot the brain parcellation relative 

to the SOM algorithm in Males because was the better optimized algorithm, having as a Davies-Bouldin (DB) 

separation measure a value equal to 0.7641 (the lesser value respect the other algorithms). 

5  DISCUSSION AND CONCLUSIONS 

We obtained two types of results. The first-type result globally confirms the gender 

determinants in RS-fMRI functionality found by Biswal et al. Our approach is also related to 

the anatomo-functional correlation of a seeds (L/F Precuneus - DMN) with other regions, and 

specially with their controlateral part and their associated bilateral cingulated regions; this is a 

confirmation because we found brain functionality noted in the scientific literatures [25]. We 

also added information about Male and Females peculiarities using algebraic distances to 

measure the within gender variability. Globally, we can claim that Females had more amplitude 

and more variability than Males. The second-type result regards the integration of clustering 

techniques, with classical statistical processing for signal analysis. We can affirm that, once 

the clustering algorithm differentiates data in different clusters, it became necessary to 

explicate the inner property that determine their inclusion: in our case, we found that clusters 

differentiated the intensity of the brain signal, i.e. low versus high level BOLD signal, and 

clusters also differentiated the quality of the brain functional connectivity, i.e. strength 

(positive) associations versus weakly associations. There are limitations regard this study: the 

number of samples we adopted are limited – 22 subjects – but, interestingly, the statistical tests 

demonstrated that the two subsamples (10 Females and 12 Males) are significantly different 

(they did not come from the same population, and then they are nice comparable but not useful 

to infer general population properties). Next study will attempt to address these limitations, 

using also other soft competitive learning algorithms to cluster fMRI data, e.g. using fuzzy 

algorithms to better handle the complexity of the of Resting-State fMRI data. 
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