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Abstract:  The binary gradient contours and local binary pattern techniques were applied to 

calculate 991 texture features from microcalcifications clusters in digital mammograms. A 

feature selection method based on mutual information ranked the features, and a Linear 

Discriminant Analysis used a forward procedure to search among the ranked features, the 

best subset. The best classification performance was achieved with 21 texture features. The 

results achieved using just texture features are encouraging. 
 

 

1 INTRODUCTION 

Women death rates related to breast cancer are high worldwide, mainly because of late 

diagnosis, i.e., when the disease is already in an advanced stage [1]. Early detection and 

tumor removal in the initial stages of the disease are efficient strategies to reduce such high 

death rates. The best methods for detecting the early signs of breast cancer are clinical and 

mammographic examinations. The main objective of mammographic examinations is to 

identify non-palpable breast lesions [2]. 

Although the mammography is the best kind of exam for detecting breast cancer, several 

factors may affect the diagnostic accuracy in breast cancer screening, such as equipment 

quality, breast densities and physician knowledge and experience. The higher is the density, 

the more difficult is the analysis and diagnosis, and then the final mammography quality is 

highly dependent on the breast tissue itself [3]. 

Microcalcifications (MCs) can be found in mammographic routine exams, and they are 

considered as significant signs of the existence of malignant lesions. MCs are small granular 

deposits of calcium that appear in a mammogram as small bright dots and their detection is 

often difficult, requiring a radiologist to carefully examine the mammogram, since they may 

be hidden, especially in dense tissues [4]. Despite their frequent occurrence in mammograms, 

although 60%–80% are detected via histological examination, only 30%–50% of MCs in 

breast carcinoma are detected via mammographic examination [4]. The difficulty in detecting 

MCs in mammograms is related to their variation in orientation, brightness, shape (from 

granular to rod shapes), and diameter, as well as the density of the surrounding tissue [5]. 

Computer-aided detection (CADe) and computer-aided diagnosis (CADx) systems have 

been developed [6][7] in an effort to assist MC detection and diagnosis. CADx systems are 
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used to provide a second opinion, thereby increasing the accuracy of a radiologist’s final 

diagnosis [3][8][9][10], and basically involve three steps[11][12]: (i) segmentation, (ii) 

features extraction and selection from the segmented MCs and their clusters, and (iii) 

classification. Such systems are usually based on features extracted from MCs, as 

compactness, roughness, number of MCs in a cluster, average area, orientation [13][14], and 

they can help minimizing false-positive and false-negative rates in breast cancer diagnosis. 

Texture features combined to morphological features have been studied to characterize 

MCs clusters [15], as well as texture features alone [16]. Chan and Sahiner [15] have pointed 

out that the texture features were more effective than morphological features in 

distinguishing malignant and benign MCs, while their best classification performance was 

obtained combining texture and morphological features. Karahaliou et al. [16], using just 

texture features, have indicated that texture analysis of the tissue surrounding MCs shows 

promising results in diagnosis of breast cancer. 

In this work, the binary gradient contours (BGC) and local binary pattern (LBP) 

techniques [17][18] were applied to calculate 991 texture features from MCs clusters 

presented on 190 images from the Digital Database for Screening Mammography (DDSM) 

[19]. Hence, texture features were ranked based on mutual information technique. Finally, an 

incremental procedure sequentially adds the top m-ranked features to the Fisher discriminant 

analysis to identify the best set of texture features in classifying benign or malignant clusters. 

2 MATERIAL AND METHODS 

The database is composed by 190 digital mammograms (300 dpi, 8 bits), from 78 patients, 

selected from the DDSM, being 140 images with MCs benign clusters and 50 images with 

malignant ones. The segmentation procedure applied to the digital mammograms to segment 

MCs is based on morphological operations as described in [20][21]. The segmented MCs 

were used just to define the MCs clusters of each image, and the MCs most external to the 

cluster were used as vertices for the definition of the convex polygon that delimits the cluster. 

The texture characteristics of the region defined by the convex polygon over the original 

digital mammogram were quantified by calculating the binary gradient contours (BGC) and 

local binary pattern (LBP). 

BGC is a family of texture descriptors that computes a set of eight binary gradients 

between pairs of pixels all along a closed path around the central pixel of a  grey scale 

image. In [18], three different paths are presented, producing three versions of BGC, namely 

single-loop (BGC1), double-loop (BGC2) and triple-loop (BGC3) (Fig. 1). Considering LBP, 

a texture operator  is applied to the image through the concept of local thresholding, in 

which the grey scale values of the periphery of the  window are converted into a set of 

binary values using the grey scale value of the central pixel as a threshold. For the BGC1 and 

BGC3 paths, a set of 255 features was determined, while 225 features were calculated for 

BCG2, and 256 features were estimated for LBP, totaling 991 features. Equations (1), (2), (3) 

and (4) show the texture features calculation. More details about BGC and LBP can be found 

in [18]. 

 

(1) 

 

(2) 
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(3) 

 

(4) 

where  is the grey-level of the central pixel,  are the grey-levels of the peripheral pixels 

over the specific path of the  kernel, and  is defined as: 

 
(5) 

For selecting and assessing the performance of BGC and LBP texture feature subsets in 

distinguishing between benign or malignant clusters, a three-step procedure was implemented 

based on the one proposed in [17]. 

    

(a) (b) (c) (d) 

Figure 1. Schematic example of paths proposed by [18] for (a) single-loop, (b) double-loop, and (c) triple-loop 

of the BGC texture descriptor, and (d) the layout of the  LBP. 
 

First, the texture feature set is ranked using the minimal-redundancy-maximal-relevance 

criterion (MI-mrMR) based on mutual information technique [22]. In the second step, an 

incremental procedure sequentially adds the top m-ranked features to the classification step. 

The classification performance is assessed using the .632+ bootstrap method [23], 

considering, 500 bootstrap samples for each feature subset and the local Fisher discriminant 

analysis (LFDA), with linear kernel, as classifier [24]. The performance index was estimated 

by calculating the average over the 500 bootstrap of the area under ROC curve (AUC.632+). In 

the third step, the feature subset with the best classification performance is considered as the 

“reference subset”, and a search process tries to find a subset with fewer features that 

performs statistically similar to the reference subset given a 95% confidence interval. The 

one-way analysis of variance (ANOVA1) tested whether the mean values between compared 

groups were different, and a post-hoc analysis was made, using the Scheffé's method to 

determine if there was significant difference among particular pairs of groups [25]. Details 

about all the procedure steps are found in [17]. 

3 RESULTS 

Figure 2 presents the performance of the classifier as the number of features ranked by the 

MI-mrMR technique is increased. The maximum AUC.632+ value ( ) is achieved 

considering 21 features. Figure 3 presents the result of the post-hoc analysis using the 

Scheffé's method. One can observe that four groups are clearly presented. The best result 

considering the set of 21 texture features (star group in Figure 3) is statistically different from 

all other sets with less texture features. The second best performance presenting the less 

number of features is achieved with 9 texture features (blue line with circle in Figure 3). One 

can note that the set with 9 texture features is not statistically different from the other sets 

with 10 to 20 texture features (grey groups in Figure 3). The third best result is reached with 
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5 texture features (blue line with diamond in Figure 3). The groups with 1, 2, 3 and 4 texture 

parameters (red line groups in Figure 3) are not statistically different among them. 

Table 1 presents the AUC.632+ values, and respective standard deviations, for the sets 

presenting the best performance and less number of texture parameters. Table 2 shows the list 

of the 21 best features ranked. 
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Figure 2. Estimation of AUC.632+ values as the number of ranked features increases. The region in which the 

highest AUC.632+ value is achieved is presented in detail. 
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Figure 3. Result of the post-hoc analysis using the Scheffé's method. The star group indicates the best result 

considering the set of 21 texture features. 

Number of texture 

features 

AUC.632+ 

values 

21  
9  
5  
1  

Table 1. Values of AUC.632+ (  standard deviation) for the sets presenting the best performance and less 

number of texture parameters. 
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Rank 1 2 3 4 5 6 7 

Feature BGC1_36 BGC3_245 BGC1_141 BGC3_4 LBP_21 BGC3_106 BGC3_129 

Rank 8 9 10 11 12 13 14 

Feature BGC1_7 BGC3_89 BGC1_166 LBP_40 LBP_68 BGC3_114 BGC3_74 

Rank 15 16 17 18 19 20 21 

Feature BGC2_122 LBP_5 LBP_100 BGC2_29 LBP_231 BGC1_162 LBP_187 

Table 2. The best twenty-one texture features ranked. 

4 DISCUSSIONS 

The experimental results suggested that the feature selection method proposed by [24] is 

useful in finding the reduced subset of features for improving the classification performance 

in terms of AUC index. The 991 texture features were reduced to a set of 21 with a 

performance of AUC.632+ . However, using the post-hoc Scheffé's method, no 

set with similar performance and a smaller number of features was found. 

To warrant a consistent statistical analysis, the heuristic rule of a minimum of 30 sample 

images for each feature added was assumed. Therefore, considering the 190 mammograms 

used in this work, the limit for the number of texture features is 6 (190/30). Based on this 

assumption, the set with 5 texture features was the one with the best performance 

(AUC.632+ ) that it is not statistically different from the one with 6 features. 

As far as we know, it is the first time that BGC and LBP are used to quantify texture of 

region of MCs cluster in mammograms, and the performance achieved is encouraging. Chan 

and Sahiner [15] stated an AUC value of 0.84 using just texture features calculated based on 

the Grey Level Co-occurrence Matrix. Combining texture and morphological features, the 

AUC value was increased to 0.89. That result is similar to the one achieved herein using just 

5 texture features (Table 1). Karahaliou et al. [16], using Laws’ Texture Energy Measure 

Features, achieved an accuracy of 89 %. 

5 CONCLUSIONS 

The binary gradient contours and local binary pattern techniques were applied to calculate 

texture features from microcalcifications cluster regions in digital mammograms. A total of 

991 texture features were computed. A feature selection method, based on mutual 

information and statistical tests, determined that 21 texture features are capable of attaining 

the best classification performance with AUC . It was also found that five 

texture features are enough to reach AUC , which represents the best 

classification performance considering a minimum of 30 sample images for each texture 

feature studied. The results achieved using just texture features are encouraging and in 

accordance with literature. In future, other texture features will be studied in order to improve 

classification performance. 
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