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Abstract: Finite-element modeling is commonly used to simulate soft-tissue biomechanics,
but is too computationally burdensome for use in real-time applications. Various forms of di-
mensionality reduction have been investigated to reduce the computational cost of finite-element
simulation, such as surrogate models, principal-component analysis, and model-order reduc-
tion, however linear dimensionality reduction techniques may be insufficient to capture the high
degree of non-linearity in biological soft-tissue materials. Recent advances in deep learning
have the potential to represent a highly complex and non-linear model deformation space in a
compact form. In this paper, we use a deep-autoencoder to approximate the large deformations
of a non-linear, muscle actuated beam. We found that the autoencoder consistently produced
lower reconstruction error than the equivalently sized principal-component analysis model.
These results are a preliminary step towards modeling more fulsome biomechanical soft-tissue
models with deep learning approaches.

1. INTRODUCTION

Finite-element (FE) modeling is the standard approach for representing soft-tissue structures
in biomechanical simulations. FE models, however, incur a substantial computational cost due
to having thousands of degrees-of-freedom. The slow simulation speeds of FE models make
them difficult to use in a clinical context where quick, or even real-time, feedback of simulation
results are necessary. Dimensionality reduction approaches, such as condensation [1], surrogate
models [2, 3], model-order reduction [4, 5], and principal-component analysis (PCA) [6, 7]
have been investigated in various biomechanical simulation contexts in order to speed up FE
simulation times. Many of these dimensionality reduction approaches are intrinsically linear
transformations. Large deformation, non-linear FE models, which are common for muscle
tissue modeling such as tongue modeling [8], present a significant challenge for traditional FE
dimensionality reduction.

Deep autoencoders (DAEs) have recently been applied to rigid bodies, but not FE models
[9], yet DAEs have the potential to complement FE simulations by learning an approximation
of the FE model’s dynamics that can be computed in real-time. However, evaluating the accu-
racy of learned FE models is an essential first step for their use in biomechanical modeling. In
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this paper, we compare the reconstruction accuracy of DAEs of a non-linear FE beam model to
that of traditional PCA [10]. To improve our analysis, we construct DAEs with either 3D or 6D
latent spaces, with a matching number of principal components (PCs) in the PCA method. A
fundamental assumption in machine learning is that models are trained using data drawn from
the same distribution as the eventual use cases. However, because our DAEs are trained to ap-
proximate a specific FE model’s dynamics, it is interesting to consider whether modifying the
simulation inputs’ distribution, while keeping model dynamics constant, greatly affects recon-
struction accuracy, especially in comparison to PCA. To assess this, we evaluate our models
using testing data drawn from either the same or a different distribution as the training data.
Finally, we compare the dimensionality reduction capabilities of the DAEs to that of the PCA
models.

2. METHODS

FE Model We implemented a simple FE beam model in ArtiSynth, an open-source biome-
chanical simulation toolkit [11]. The beam consisted of 16 hexahedral elements (45 nodes)
arranged in a rectangular grid with dimensions of 0.04 x 0.04 x 0.10 meters (see Figure 1).
The 9 nodes on the rightmost face of the beam were set non-dynamic as a fixed boundary con-
dition. The 3D position of the remaining 36 nodes represented the FE model state as a 108
dimensional vector (36 x 3). Deformations of the beam were effected by muscle elements,
which generate compressive stress when activated. Superior longitudinal (SL), inferior longitu-
dinal (IL), vertical (V), and transverse (T) muscle elements were added along the top, bottom,
vertical, and horizontal element edges, respectively.

Figure 1. Simple FE beam model, with nodes in blue and SL, IL, V, and T muscle elements in
cyan, green, purple, and red, respectively.

Data Gathering. Training and testing data were generated using the BatchSim feature of
ArtiSynth, which permits flexible and autonomous execution of simulations with combinatorial
or probabilistic input parameter (SL, IL, V, and T muscle activations) variation, and produces
structured outputs (FE model state) that can be directly used with deep learning and PCA.
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We assumed that muscle activations are coordinated with independently controllable syner-
gies [12, 13]. For the beam, these synergies were the four muscle groups built into the model,
but for future anatomical models, the synergies could be derived from data [14, 15]. Training
data were generated to create sparse activation patterns for the muscle synergies, i.e. to reduce
co-contraction of antagonist synergies in order to generate large beam deformations. For all
possible combinations of 1 or 2 of the 4 muscles, we simulated all possible combinations of
activations from 0% to 100% (in increments of 10%). To introduce noise, each simulation was
repeated multiple times, with the activation of all remaining muscles being drawn from inde-
pendent uniform distributions over [0%, 5%] in each repetition. In total, 11750 samples were
drawn. For each sample, ArtiSynth’s quasi-static solver computed the final deformation of the
beam that results from the muscle activations, and BatchSim recorded the resulting model state
(see Figure 2). In addition, for each sample, we categorized its deformation class (Neutral, Bend
Up, Bend Down, Elongate, or Contract) and computed its deformation strength (e.g. slightly
elongated vs. very elongated) relative to the neutral position of the central node of the front face
(larger values indicate greater strength). These were recorded for investigating dimensionality
reduction capabilities.

Input Distributions Deterministic Model Output Distributions
e.g. Uniform(0,1) FE Model State,
Muscle Activations Deformation Class
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Figure 2. Data gathering procedure using the BatchSim feature of ArtiSynth.

Testing data were generated similarly, but split into two sets. Muscle activations were drawn,
in the first (Test Set A), from the same distribution as that of the training data (2938 samples),
and in the second (Test Set B), from independent uniform distributions over [0%, 100%] (3000
samples).

Deep Autoencoders. We constructed feedforward DAEs with fully-connected layers consist-
ing of Parametric Rectified Linear Units (P-ReLLU) [16] (see Figure 3). These differ from regular
ReLU in that the activation function

¢(x) = max(yz, z) 6]

includes a learnable parameter -y, whereas v = 0 in ReLLU. y was initialized to O for all layers
except the output layer, where it was initialized to 1. As such, all layers except the last were ini-
tially ReLU, whereas the last layer initially used a linear activation function, which is common
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practice when using DAEs for regression [17]. The architecture in terms of number of units per
layer was as follows: 108, 64, 32, 16, X, 16, 32, 64, 108, where X € {3, 6} is the number of
units in the code layer, representing the dimension of the latent space.
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Figure 3. General architecture of a deep autoencoder.

Regularization is common practice in artificial neural networks to prevent overfitting to
training data and improve generalizability to unseen examples, but at the cost of some loss
in precision. However, since we were training DAEs to capture the deformation behaviour
of a specific object, if the training data sufficiently cover the space of possible deformations,
then overfitting would be minimal, and regularization, unnecessary. If overfitting occurred,
validation loss should be significantly larger than training loss. In addition, Test Set B was
designed to assess the generalizability of the model to examples drawn from a distribution
different than the training set.

Each DAE was trained for 1000 epochs in mini-batches of size 128 using the mean squared
error (MSE) loss function and the Adam optimizer with

a = 0.0001
B1=0.9 )
B2 = 0.999

€= le—8

and « decay rate of 0.000001 [18]. The training data were split into training and validation sets
in a 90-10 ratio. All data were normalized using the training set mean and standard deviation.

Principal Component Analysis. PCA can be interpreted as a machine learning model. If only
the £ most important PCs are kept, PCA is equivalent to a DAE with k units in the code layer
and using only linear activation functions [19]. As such, DAEs are a non-linear generalization
of PCA, and the space of the £ most important PCs can be considered the k-dimensional latent
space of a PCA model. To match our DAEs, we used k£ € {3, 6}. The “training” of a PCA
model consists in factoring the training data matrix to obtain the £ most important PCs.
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Reconstruction Accuracy Measurement. We quantified reconstruction accuracy using MSE.
Each sample in a test set was fed as input to a DAE or PCA model, which attempted to recon-
struct the input as its output. Given that the input and output vectors corresponded to the 3D
position of the FE beam nodes, computing the MSE between them amounts to computing the
average squared distance between each node’s true and reconstructed position. Given that the
3D positions were in units of meters, the MSE was in units of square meters.

Dimensionality Reduction. PCA is used as a dimensionality reduction technique whereby
the input vector is mapped into the latent space [19]. DAEs can serve the same purpose by
interpreting the output of the code layer units as a latent space vector. For both DAE and PCA
models, we mapped each input vector of a test set into the latent space. To visualize the structure
of the latent space, we plotted the point corresponding to each latent space vector, then coloured
and sized each point according to the deformation class and strength, respectively, of the cor-
responding input vector. Since 6D latent spaces cannot be directly visualized, we embedded
the 6D vectors in 3D space using the t-SNE method, which maintains the relative distance of
the 6D points in the 3D space [20]. This is important, as qualitatively determining whether or
not dimensionality reduction preserves the beam’s structural information, relies upon observing
that deformation classes cluster together and that deformation strengths vary smoothly within
each cluster.

3. RESULTS

Figure 4 shows the loss as a function of epoch for all trained DAEs. The near equivalence
between training and validation losses indicates overfitting is minimal.

Training and Validation Loss vs. Epoch for 3D and 6D DAEs
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Figure 4. Training and validation loss vs. epoch for DAEs with a 3D or 6D latent space.

An example reconstruction of the beam model deformation by DAE and PCA is shown in
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Figure 5, where the true node positions are in blue, DAE-reconstructed node positions in red,
and PCA-reconstructed node positions in green. Qualitatively, the DAE reconstruction appears
to better fit the true deformation as compared to the PCA reconstruction.
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Figure 5. Side view (left) and oblique view (right) of a reconstruction example, where IL and
SL have 50% and 100% activation, respectively, showing DAE (red points) and PCA (green
points) reconstructions with 3D latent spaces.

Table 1 summarizes the testing results for both the DAE and PCA models, using both test
sets, and with both 3D and 6D latent spaces. The entries are the mean accuracy (MSE) for each
case, with the accuracy standard deviation in parentheses.

Latent Space Dimension
Test Set  Model 3 6
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Table 1. Reconstruction accuracy results for all configurations.

Table 2 summarizes hypothesis test results. Each test is a two-tailed, two-sample ¢-test

(paired whenever possible), with the null hypothesis that the two population means (of which
the sample means in Table 1 are estimates) involved in the test are equal. The “model” tests
examine whether DAEs outperform PCA models, with the null hypothesis that the mean accu-
racy of DAE and PCA models with equivalent test set and latent space dimension are equal.
The “dimension” tests examine whether 6D latent spaces outperform their 3D counterpart, with
the null hypothesis that the mean accuracy of two models of the same type (DAE or PCA) and
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Test Type Null Hypothesis Sample Means Involved p-value
Model choice has no effect on mean accuracy

Model with 3D latent space and using Test Set A @ ¢ p < 0.00001
oaa | Modshe b et s | o p<owon
Moo | e e e | nd | p<omeo
Rt B O
Dimension onLr?ltee;rI zsilc)glifa(iiynffnls)izllli?E(l)snn"l(")e:ffgg B & p < 0.00001
Dimension Latent space dimension has no effect g h < 0.00001

on mean accuracy of PCA on Test Set B
Test set has no effect on mean

it . , . 1

est Set accuracy of DAEs with 3D latent space @ e p < 0.0000

Latent space dimension has no effect on mean

Test Set accuracy of DAEs with 6D latent space b f p < 0.00001
Latent space dimension has no effect on mean

Test Set accuracy of PCA with 3D latent space “9 p < 0.00001

Test Set Latent space dimension has no effect on mean d.h < 0.00001

accuracy of PCA with 6D latent space
Table 2. Hypothesis test results. Sample means refer to entries in Table 1.

equivalent test set, but differing latent space dimension are equal. The “test set” tests examine
whether Test Set A outperforms Test Set B, with the null hypothesis that the mean accuracy of
two models of the same type (DAE or PCA) and equivalent latent space dimension, but differing
test set are equal. We see that, in all cases, the null hypothesis is rejected in favour of the alter-
native hypothesis that the accuracy means are not equal. Comparing mean values (see Table 1),
DAEs consistently outperform PCA models, 6D consistently outperform 3D latent spaces, and
Test Set A consistently outperforms Test Set B.

The latent space visualizations for DAE and PCA models were qualitatively similar (see
Figure 6). In all cases, the clusters are well defined, with few outliers. In addition, deformation
strengths vary smoothly within each cluster. The t-SNE embedding of 6D latent spaces (Figure
6, right column) resulted in occasional bimodal clustering observed within each deformation
class, though these may, in fact, form a contiguous cluster in the higher-dimensional space.

4. CONCLUSIONS

Finite-element (FE) models face a number of computational challenges compared to multi-
body musculoskeletal models. DAEs have the potential to compute an approximation of FE
model dynamics in real-time, while providing greater accuracy than PCA. Evaluating the accu-
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Figure 6. Latent space visualizations for all configurations.

racy of these models represents a critical first step.

Results show DAEs outperform equivalent PCA models. Although the difference is statisti-
cally significant because of the large sample sizes, the result may not always be practically sig-
nificant. However, an order of magnitude better performance is observed in the case of Test Set
A with 3D latent spaces. This fits with the qualitative assessment that the DAE-reconstructed
red points fit better than the PCA-reconstructed green points. Comparing across latent space
dimensions, results show 6D latent spaces outperform their 3D counterpart. This agrees with
intuition, since doubling the number of dimensions allows the models to capture more variable
information. Similarly, comparing across test sets, we see that Test Set A outperforms Test
Set B. This was expected, since samples drawn from the same distribution as the training data
should be reconstructed more accurately. However, the DAEs, despite having no regularization,
do not drastically overfit the training data, since they still outperform equivalent PCA models
across test sets.

Although DAE and PCA models structure their latent spaces differently (linearly vs. non-
linearly), neither appears superior to the other at this stage. As future work, we plan to extend
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this analysis to larger FE models that involve more substantial non-linearity (e.g. FE models
with contact, and a 3D FE tongue model) to investigate whether the non-linear dimensionality
reduction of the DAEs produces a more effective low-dimensional representation than PCA.
If so, the encoders and decoders resulting from the trained DAEs may serve as effective pre-
trained layers to separately learn predictive forward (muscle activation to FE state) and inverse
(FE state to muscle activation) models.

As future work, we plan to assess the computational cost and numerical stability of both
DAE and PCA models compared to Artisynth’s quasi-static incremental solver. We also plan to
test additional measures of accuracy besides MSE and alternative loss functions for training the
DAEs. We are particularly interested in assessing how these factors change as the complexity
and size of the FE model increases.
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